Martyniak Kari, Kennedy Sean, Karimzadeh Makan, Cruz Maria A, Jeon Oju, Alsberg Eben, Kean Thomas J
Biionix Cluster, College of Medicine, University of Central Florida, Orlando, FL 32827, USA.
Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA.
Bioengineering (Basel). 2023 Aug 23;10(9):997. doi: 10.3390/bioengineering10090997.
The surface zone of articular cartilage is the first area impacted by cartilage defects, commonly resulting in osteoarthritis. Chondrocytes in the surface zone of articular cartilage synthesize and secrete lubricin, a proteoglycan that functions as a lubricant protecting the deeper layers from shear stress. Notably, 3D bioprinting is a tissue engineering technique that uses cells encapsulated in biomaterials to fabricate 3D constructs. Gelatin methacrylate (GelMA) is a frequently used biomaterial for 3D bioprinting cartilage. Oxidized methacrylated alginate (OMA) is a chemically modified alginate designed for its tunable degradation rate and mechanical properties. To determine an optimal combination of GelMA and OMA for lubricin expression, we used our novel high-throughput human articular chondrocyte reporter system. Primary human chondrocytes were transduced with (lubricin) promoter-driven luciferase, allowing for temporal assessment of lubricin expression. A lubricin expression-driven Design of Experiment screen and subsequent validation identified 14% GelMA/2% OMA for further study. Therefore, DoE optimized 14% GelMA/2% OMA, 14% GelMA control, and 16% GelMA (total solid content control) were 3D bioprinted. The combination of lubricin protein expression and shape retention over the 22 days in culture, successfully determined the 14% GelMA/2%OMA to be the optimal formulation for lubricin secretion. This strategy allows for rapid analysis of the role(s) of biomaterial composition, stiffness or other cell manipulations on lubricin expression by chondrocytes, which may improve therapeutic strategies for cartilage regeneration.
关节软骨的表面区域是受软骨缺损影响的首个区域,通常会导致骨关节炎。关节软骨表面区域的软骨细胞合成并分泌润滑素,这是一种蛋白聚糖,起到润滑剂的作用,保护更深层免受剪切应力。值得注意的是,3D生物打印是一种组织工程技术,它利用封装在生物材料中的细胞来制造3D构建体。甲基丙烯酸明胶(GelMA)是一种常用于3D生物打印软骨的生物材料。氧化甲基丙烯酸化海藻酸盐(OMA)是一种化学改性的海藻酸盐,因其可调节的降解速率和机械性能而设计。为了确定GelMA和OMA促进润滑素表达的最佳组合,我们使用了我们新颖的高通量人关节软骨细胞报告系统。原代人软骨细胞用(润滑素)启动子驱动的荧光素酶进行转导,从而能够对润滑素表达进行时间评估。一项由润滑素表达驱动的实验设计筛选以及随后的验证确定了14% GelMA/2% OMA用于进一步研究。因此,将实验设计优化的14% GelMA/2% OMA、14% GelMA对照和16% GelMA(总固体含量对照)进行3D生物打印。在培养的22天内,润滑素蛋白表达与形状保持的结合,成功确定14% GelMA/2% OMA是润滑素分泌的最佳配方。这种策略能够快速分析生物材料组成、硬度或其他细胞操作对软骨细胞润滑素表达的作用,这可能会改善软骨再生的治疗策略。