Biionix Cluster, Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, United States.
Biionix Cluster, Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL, United States.
Acta Biomater. 2022 Oct 15;152:221-234. doi: 10.1016/j.actbio.2022.08.058. Epub 2022 Aug 29.
Gelatin methacrylate (GelMA) and hyaluronic acid methacrylate (HAMA) are frequently used biomaterials for 3D bioprinting, with individual well-established material characteristics. To identify an ideal combination of GelMA and HAMA for chondrogenesis, a novel, primary human chondrocyte COL2A1-Gaussia luciferase reporter system (HuCol2gLuc) was developed. With this non-destructive, high-throughput temporal assay, Gaussia luciferase is secreted from the cells and used as a proxy for measuring type II collagen production. GelMA:HAMA ratios were screened using the reporter system before proceeding to 3D bioprinting. This method is efficient, saving on time and materials, resulting in a streamlined process of biomaterial optimization. The screen revealed that the addition of HAMA to GelMA improved chondrogenesis over GelMA (15%) alone. Storage moduli were measured using dynamic mechanical analysis of the same GelMA:HAMA ratios and established an initial threshold for chondrogenesis of ∼30kPa. To determine if biomaterial storage moduli impact cell mobility, human primary chondrocytes transduced with green fluorescent protein (GFP) were 3D bioprinted in either 1:1 or 2:1 ratios with storage moduli of 32kPa and 57.9kPa, respectively. We found that reduced cell mobility, in the stiffer biomaterial, had higher type II collagen expression, than the softer material with more cell mobility. Finally, after 3D bioprinting with HuCol2gLuc cells we successfully identified an optimal combination (2:1) of GelMA:HAMA and photo-crosslinking time (38s) for chondrogenesis. STATEMENT OF SIGNIFICANCE: One challenge of 3D bioprinting is identifying ideal biomaterials that stimulate articular cartilage development. To identify an optimal combination of gelatin methacrylate and hyaluronic acid methacrylate for chondrogenesis we developed a primary human chondrocyte type II collagen Gaussia luciferase reporter cell (HuCol2gLuc). This non-destructive, high-throughput assay uses a secreted Gaussia luciferase as a proxy for temporal type II collagen production. This reporter system streamlines the biomaterial optimization process before 3D bioprinting. We also used it to determine the level of stiffness required for chondrogenesis. And for the first time, we quantified chondrocyte mobility in a 3D bioprinted construct. Together these results indicate that a biomaterial with a higher storage modulus and less cell mobility, improves chondrogenesis.
明胶甲基丙烯酰胺(GelMA)和透明质酸甲基丙烯酰胺(HAMA)是常用于 3D 生物打印的生物材料,各自具有成熟的材料特性。为了确定 GelMA 和 HAMA 用于软骨生成的理想组合,我们开发了一种新型的、原代人软骨细胞 COL2A1-Gaussia 荧光素酶报告系统(HuCol2gLuc)。使用这种非破坏性、高通量的时间测定法,Gaussia 荧光素酶从细胞中分泌出来,可作为测量 II 型胶原产生的替代物。在进行 3D 生物打印之前,使用报告系统筛选 GelMA:HAMA 比例。这种方法效率高,节省了时间和材料,简化了生物材料优化过程。该筛选表明,与单独使用 GelMA(15%)相比,添加 HAMA 可改善软骨生成。使用同一 GelMA:HAMA 比例的动态力学分析测量储能模量,并建立了约 30kPa 的初始软骨生成阈值。为了确定生物材料储能模量是否会影响细胞迁移性,将转导绿色荧光蛋白(GFP)的人原代软骨细胞以 1:1 或 2:1 的比例 3D 打印到储能模量分别为 32kPa 和 57.9kPa 的生物材料中。我们发现,在较硬的生物材料中,细胞迁移性降低会导致 II 型胶原表达更高,而在较软的、具有更高细胞迁移性的材料中则表达较低。最后,在用 HuCol2gLuc 细胞进行 3D 生物打印后,我们成功确定了 GelMA:HAMA 的最佳组合(2:1)和光交联时间(38s),以促进软骨生成。
3D 生物打印面临的挑战之一是确定刺激关节软骨发育的理想生物材料。为了确定 GelMA 和 HAMA 用于软骨生成的最佳组合,我们开发了一种原代人软骨细胞 II 型胶原 Gaussia 荧光素酶报告细胞(HuCol2gLuc)。这种非破坏性、高通量的测定法使用分泌的 Gaussia 荧光素酶作为时间性 II 型胶原产生的替代物。该报告系统简化了 3D 生物打印前的生物材料优化过程。我们还使用它来确定软骨生成所需的硬度水平。并且,我们首次量化了 3D 生物打印构建体中的软骨细胞迁移性。这些结果共同表明,具有较高储能模量和较低细胞迁移性的生物材料可改善软骨生成。