Suppr超能文献

通过基于区域锚定卷积神经网络模型对基于移动图像的伤口大小和组织分类进行伤口严重程度评估的验证

Validating Wound Severity Assessment via Region-Anchored Convolutional Neural Network Model for Mobile Image-Based Size and Tissue Classification.

作者信息

Jaganathan Yogapriya, Sanober Sumaya, Aldossary Sultan Mesfer A, Aldosari Huda

机构信息

Department of Computer Science and Engineering, Kongunadu College of Engineering and Technology, Trichy 621215, India.

Department of Computer Science, Prince Sattam Bin Abdulaziz University, Wadi al dwassir 1190, Saudi Arabia.

出版信息

Diagnostics (Basel). 2023 Sep 6;13(18):2866. doi: 10.3390/diagnostics13182866.

Abstract

Evaluating and tracking the size of a wound is a crucial step in wound assessment. The measurement of various indicators on wounds over time plays a vital role in treating and managing crucial wounds. This article introduces the concept of utilizing mobile device-captured photographs to address this challenge. The research explores the application of digital technologies in the treatment of chronic wounds, offering tools to assist healthcare professionals in enhancing patient care and decision-making. Additionally, it investigates the use of deep learning (DL) algorithms along with the use of computer vision techniques to enhance the validation results of wounds. The proposed method involves tissue classification as well as visual recognition system. The wound's region of interest (RoI) is determined using superpixel techniques, enabling the calculation of its wounded zone. A classification model based on the Region Anchored CNN framework is employed to detect and differentiate wounds and classify their tissues. The outcome demonstrates that the suggested method of DL, with visual methodologies to detect the shape of a wound and measure its size, achieves exceptional results. By utilizing Resnet50, an accuracy of 0.85 percent is obtained, while the Tissue Classification CNN exhibits a Median Deviation Error of 2.91 and a precision range of 0.96%. These outcomes highlight the effectiveness of the methodology in real-world scenarios and its potential to enhance therapeutic treatments for patients with chronic wounds.

摘要

评估和跟踪伤口大小是伤口评估中的关键步骤。随着时间的推移对伤口上的各种指标进行测量,在关键伤口的治疗和管理中起着至关重要的作用。本文介绍了利用移动设备拍摄的照片来应对这一挑战的概念。该研究探索了数字技术在慢性伤口治疗中的应用,提供了有助于医疗保健专业人员改善患者护理和决策的工具。此外,它还研究了深度学习(DL)算法以及计算机视觉技术的使用,以提高伤口验证结果。所提出的方法涉及组织分类以及视觉识别系统。使用超像素技术确定伤口的感兴趣区域(RoI),从而能够计算其受伤区域。采用基于区域锚定卷积神经网络(CNN)框架的分类模型来检测和区分伤口并对其组织进行分类。结果表明,所建议的深度学习方法结合视觉方法来检测伤口形状并测量其大小,取得了优异的成果。通过使用Resnet50,获得了85%的准确率,而组织分类卷积神经网络的中位数偏差误差为2.91,精确率范围为96%。这些结果突出了该方法在实际场景中的有效性及其增强慢性伤口患者治疗效果的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c48d/10529166/41ef0bc14669/diagnostics-13-02866-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验