Zhang Hui, Zhao Junde, Farzan Ramyar, Alizadeh Otaghvar Hamidreza
The Second Clinical Medical School, Lanzhou University, Lanzhou, China.
Department of Clinical Medicine, Health Science Center, Lanzhou University, Lanzhou, China.
Int Wound J. 2024 Jan;21(1):e14665. doi: 10.1111/iwj.14665.
Surgical wounds may arise due to harm inflicted upon soft tissue during surgical intervention, and many complications and injuries may accompany them. These complications can lead to prolonged hospitalization and poorer clinical outcomes. Also, Machine learning (ML) is a Section of artificial intelligence (AI) that has emerged in medical care and is increasingly used for diagnosis, complications, prognosis and recurrence prediction. This study aims to investigate surgical wound risk predictions and management using a ML algorithm by R programming language analysis. The systematic review, following PRISMA guidelines, spanned electronic databases using search terms like 'machine learning', 'surgical' and 'wound'. Inclusion criteria covered experimental studies from 1990 to the present on ML's application in surgical wound evaluation. Exclusion criteria included studies lacking full text, focusing on ML in all surgeries, neglecting wound assessment and duplications. Two authors rigorously assessed titles, abstracts and full texts, excluding reviews and guidelines. Ultimately, relevant articles were then analysed. The present study identified nine articles employing ML for surgical wound management. The analysis encompassed various surgical procedures, including Cardiothoracic, Caesarean total abdominal colectomy, Burn plastic surgery, facial plastic surgery, laparotomy, minimal invasive surgery, hernia repair and unspecified surgeries. ML was skillful in evaluating surgical site infections (SSI) in seven studies, while two extended its use to burn-grade diagnosis and wound classification. Support Vector Machine (SVM) and Convolutional Neural Network (CNN) were the most utilized algorithms. ANN achieved a 96% accuracy in facial plastic surgery wound management. CNN demonstrated commendable accuracies in various surgeries, and SVM exhibited high accuracy in multiple surgeries and burn plastic surgery. In sum, these findings underscore ML's potential for significant improvements in postoperative management and the development of enhanced care techniques, particularly in surgical wound management.
手术伤口可能是由于手术干预过程中对软组织造成的损伤而产生的,并且可能伴随许多并发症和损伤。这些并发症可能导致住院时间延长和临床结果较差。此外,机器学习(ML)是人工智能(AI)的一个分支,已出现在医疗保健领域,并越来越多地用于诊断、并发症、预后和复发预测。本研究旨在通过R编程语言分析,使用ML算法研究手术伤口风险预测和管理。按照PRISMA指南进行的系统评价,使用“机器学习”、“手术”和“伤口”等搜索词在电子数据库中进行检索。纳入标准涵盖了1990年至今关于ML在手术伤口评估中的应用的实验研究。排除标准包括缺乏全文、关注所有手术中的ML、忽视伤口评估和重复的研究。两位作者严格评估标题、摘要和全文,排除综述和指南。最终,对相关文章进行了分析。本研究确定了9篇使用ML进行手术伤口管理的文章。分析涵盖了各种外科手术,包括心胸外科、剖宫产全腹结肠切除术、烧伤整形手术、面部整形手术、剖腹手术、微创手术、疝气修补术和未明确的手术。在7项研究中,ML擅长评估手术部位感染(SSI),而2项研究将其应用扩展到烧伤分级诊断和伤口分类。支持向量机(SVM)和卷积神经网络(CNN)是最常用的算法。人工神经网络(ANN)在面部整形手术伤口管理中达到了96%的准确率。CNN在各种手术中表现出值得称赞的准确率,SVM在多种手术和烧伤整形手术中表现出高准确率。总之,这些发现强调了ML在术后管理方面显著改善的潜力以及先进护理技术的发展,特别是在手术伤口管理方面。
Cochrane Database Syst Rev. 2022-4-26
Cochrane Database Syst Rev. 2017-10-30
Cochrane Database Syst Rev. 2018-2-6
Cochrane Database Syst Rev. 2016-4-21
Cochrane Database Syst Rev. 2024-12-2
AMIA Annu Symp Proc. 2021
Annu Int Conf IEEE Eng Med Biol Soc. 2021-11
Surg Infect (Larchmt). 2021-8
Adv Wound Care (New Rochelle). 2022-6