文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于机器学习算法的手术伤口并发症风险预测:一项系统评价。

Risk predictions of surgical wound complications based on a machine learning algorithm: A systematic review.

作者信息

Zhang Hui, Zhao Junde, Farzan Ramyar, Alizadeh Otaghvar Hamidreza

机构信息

The Second Clinical Medical School, Lanzhou University, Lanzhou, China.

Department of Clinical Medicine, Health Science Center, Lanzhou University, Lanzhou, China.

出版信息

Int Wound J. 2024 Jan;21(1):e14665. doi: 10.1111/iwj.14665.


DOI:10.1111/iwj.14665
PMID:38272811
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10805538/
Abstract

Surgical wounds may arise due to harm inflicted upon soft tissue during surgical intervention, and many complications and injuries may accompany them. These complications can lead to prolonged hospitalization and poorer clinical outcomes. Also, Machine learning (ML) is a Section of artificial intelligence (AI) that has emerged in medical care and is increasingly used for diagnosis, complications, prognosis and recurrence prediction. This study aims to investigate surgical wound risk predictions and management using a ML algorithm by R programming language analysis. The systematic review, following PRISMA guidelines, spanned electronic databases using search terms like 'machine learning', 'surgical' and 'wound'. Inclusion criteria covered experimental studies from 1990 to the present on ML's application in surgical wound evaluation. Exclusion criteria included studies lacking full text, focusing on ML in all surgeries, neglecting wound assessment and duplications. Two authors rigorously assessed titles, abstracts and full texts, excluding reviews and guidelines. Ultimately, relevant articles were then analysed. The present study identified nine articles employing ML for surgical wound management. The analysis encompassed various surgical procedures, including Cardiothoracic, Caesarean total abdominal colectomy, Burn plastic surgery, facial plastic surgery, laparotomy, minimal invasive surgery, hernia repair and unspecified surgeries. ML was skillful in evaluating surgical site infections (SSI) in seven studies, while two extended its use to burn-grade diagnosis and wound classification. Support Vector Machine (SVM) and Convolutional Neural Network (CNN) were the most utilized algorithms. ANN achieved a 96% accuracy in facial plastic surgery wound management. CNN demonstrated commendable accuracies in various surgeries, and SVM exhibited high accuracy in multiple surgeries and burn plastic surgery. In sum, these findings underscore ML's potential for significant improvements in postoperative management and the development of enhanced care techniques, particularly in surgical wound management.

摘要

手术伤口可能是由于手术干预过程中对软组织造成的损伤而产生的,并且可能伴随许多并发症和损伤。这些并发症可能导致住院时间延长和临床结果较差。此外,机器学习(ML)是人工智能(AI)的一个分支,已出现在医疗保健领域,并越来越多地用于诊断、并发症、预后和复发预测。本研究旨在通过R编程语言分析,使用ML算法研究手术伤口风险预测和管理。按照PRISMA指南进行的系统评价,使用“机器学习”、“手术”和“伤口”等搜索词在电子数据库中进行检索。纳入标准涵盖了1990年至今关于ML在手术伤口评估中的应用的实验研究。排除标准包括缺乏全文、关注所有手术中的ML、忽视伤口评估和重复的研究。两位作者严格评估标题、摘要和全文,排除综述和指南。最终,对相关文章进行了分析。本研究确定了9篇使用ML进行手术伤口管理的文章。分析涵盖了各种外科手术,包括心胸外科、剖宫产全腹结肠切除术、烧伤整形手术、面部整形手术、剖腹手术、微创手术、疝气修补术和未明确的手术。在7项研究中,ML擅长评估手术部位感染(SSI),而2项研究将其应用扩展到烧伤分级诊断和伤口分类。支持向量机(SVM)和卷积神经网络(CNN)是最常用的算法。人工神经网络(ANN)在面部整形手术伤口管理中达到了96%的准确率。CNN在各种手术中表现出值得称赞的准确率,SVM在多种手术和烧伤整形手术中表现出高准确率。总之,这些发现强调了ML在术后管理方面显著改善的潜力以及先进护理技术的发展,特别是在手术伤口管理方面。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a12/10805538/71eb76bd2f9e/IWJ-21-e14665-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a12/10805538/71eb76bd2f9e/IWJ-21-e14665-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a12/10805538/71eb76bd2f9e/IWJ-21-e14665-g001.jpg

相似文献

[1]
Risk predictions of surgical wound complications based on a machine learning algorithm: A systematic review.

Int Wound J. 2024-1

[2]
Negative pressure wound therapy for surgical wounds healing by primary closure.

Cochrane Database Syst Rev. 2022-4-26

[3]
Machine Learning, Deep Learning, Artificial Intelligence and Aesthetic Plastic Surgery: A Qualitative Systematic Review.

Aesthetic Plast Surg. 2025-1

[4]
Intracavity lavage and wound irrigation for prevention of surgical site infection.

Cochrane Database Syst Rev. 2017-10-30

[5]
Intraoperative interventions for preventing surgical site infection: an overview of Cochrane Reviews.

Cochrane Database Syst Rev. 2018-2-6

[6]
A Systematic Review and Bibliometric Analysis of Applications of Artificial Intelligence and Machine Learning in Vascular Surgery.

Ann Vasc Surg. 2022-9

[7]
Comparison of Two Modern Survival Prediction Tools, SORG-MLA and METSSS, in Patients With Symptomatic Long-bone Metastases Who Underwent Local Treatment With Surgery Followed by Radiotherapy and With Radiotherapy Alone.

Clin Orthop Relat Res. 2024-12-1

[8]
[Volume and health outcomes: evidence from systematic reviews and from evaluation of Italian hospital data].

Epidemiol Prev. 2013

[9]
Active body surface warming systems for preventing complications caused by inadvertent perioperative hypothermia in adults.

Cochrane Database Syst Rev. 2016-4-21

[10]
Interventions to prevent surgical site infection in adults undergoing cardiac surgery.

Cochrane Database Syst Rev. 2024-12-2

引用本文的文献

[1]
Machine-learning-based prediction of functional recovery in deep-pain-negative dogs after decompressive thoracolumbar hemilaminectomy for acute intervertebral disc extrusion.

Vet Surg. 2025-5

[2]
RETRACTION: Risk Predictions of Surgical Wound Complications Based on a Machine Learning Algorithm: A Systematic Review.

Int Wound J. 2025-3

[3]
Development and validation of a preoperative systemic inflammation-based nomogram for predicting surgical site infection in patients with colorectal cancer.

Int J Colorectal Dis. 2024-12-21

[4]
Artificial intelligence in plastic surgery, where do we stand?

JPRAS Open. 2024-9-14

[5]
Prevalence of surgical site infection and risk factors in patients after knee surgery: A systematic review and meta-analysis.

Int Wound J. 2024-2

本文引用的文献

[1]
Validating Wound Severity Assessment via Region-Anchored Convolutional Neural Network Model for Mobile Image-Based Size and Tissue Classification.

Diagnostics (Basel). 2023-9-6

[2]
The use of mobile thermal imaging and machine learning technology for the detection of early surgical site infections.

Am J Surg. 2024-5

[3]
A Review on Machine Learning Approaches in Identification of Pediatric Epilepsy.

SN Comput Sci. 2022

[4]
DL4Burn: Burn Surgical Candidacy Prediction using Multimodal Deep Learning.

AMIA Annu Symp Proc. 2021

[5]
The Use of Mobile Thermal Imaging and Deep Learning for Prediction of Surgical Site Infection.

Annu Int Conf IEEE Eng Med Biol Soc. 2021-11

[6]
A systematic review of machine learning and automation in burn wound evaluation: A promising but developing frontier.

Burns. 2021-12

[7]
Machine Learning and Artificial Intelligence for Surgical Decision Making.

Surg Infect (Larchmt). 2021-8

[8]
Advanced Wound Diagnostics: Toward Transforming Wound Care into Precision Medicine.

Adv Wound Care (New Rochelle). 2022-6

[9]
Review of deep learning: concepts, CNN architectures, challenges, applications, future directions.

J Big Data. 2021

[10]
PRISMA-S: an extension to the PRISMA Statement for Reporting Literature Searches in Systematic Reviews.

Syst Rev. 2021-1-26

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索