Suppr超能文献

智能糖尿病足溃疡评分系统。

Smart diabetic foot ulcer scoring system.

机构信息

School of Computer Science, Hunan First Normal University, Changsha, 410205, China.

Department of Dermatology, Shenzhen People's Hospital, The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China.

出版信息

Sci Rep. 2024 May 21;14(1):11588. doi: 10.1038/s41598-024-62076-1.

Abstract

Current assessment methods for diabetic foot ulcers (DFUs) lack objectivity and consistency, posing a significant risk to diabetes patients, including the potential for amputations, highlighting the urgent need for improved diagnostic tools and care standards in the field. To address this issue, the objective of this study was to develop and evaluate the Smart Diabetic Foot Ulcer Scoring System, ScoreDFUNet, which incorporates artificial intelligence (AI) and image analysis techniques, aiming to enhance the precision and consistency of diabetic foot ulcer assessment. ScoreDFUNet demonstrates precise categorization of DFU images into "ulcer," "infection," "normal," and "gangrene" areas, achieving a noteworthy accuracy rate of 95.34% on the test set, with elevated levels of precision, recall, and F1 scores. Comparative evaluations with dermatologists affirm that our algorithm consistently surpasses the performance of junior and mid-level dermatologists, closely matching the assessments of senior dermatologists, and rigorous analyses including Bland-Altman plots and significance testing validate the robustness and reliability of our algorithm. This innovative AI system presents a valuable tool for healthcare professionals and can significantly improve the care standards in the field of diabetic foot ulcer assessment.

摘要

目前用于评估糖尿病足溃疡(DFU)的方法缺乏客观性和一致性,这给糖尿病患者带来了重大风险,包括截肢的可能性,这突出表明需要改进该领域的诊断工具和护理标准。为了解决这个问题,本研究的目的是开发和评估智能糖尿病足溃疡评分系统 ScoreDFUNet,该系统结合了人工智能(AI)和图像分析技术,旨在提高糖尿病足溃疡评估的准确性和一致性。ScoreDFUNet 能够精确地将 DFU 图像分为“溃疡”、“感染”、“正常”和“坏疽”区域,在测试集中取得了高达 95.34%的准确率,具有较高的精确率、召回率和 F1 分数。与皮肤科医生的比较评估证实,我们的算法始终优于初级和中级皮肤科医生的表现,与高级皮肤科医生的评估非常接近,并且包括 Bland-Altman 图和显著性检验在内的严格分析验证了我们算法的稳健性和可靠性。这个创新的 AI 系统为医疗保健专业人员提供了一个有价值的工具,可以显著提高糖尿病足溃疡评估领域的护理标准。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5962/11109117/37253add0c3f/41598_2024_62076_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验