Suppr超能文献

机器学习算法可预测创伤性脑损伤患者在重症监护病房的死亡风险。

Machine Learning Algorithm Predicts Mortality Risk in Intensive Care Unit for Patients with Traumatic Brain Injury.

作者信息

Tu Kuan-Chi, Tau Eric Nyam Tee, Chen Nai-Ching, Chang Ming-Chuan, Yu Tzu-Chieh, Wang Che-Chuan, Liu Chung-Feng, Kuo Ching-Lung

机构信息

Department of Neurosurgery, Chi Mei Medical Center, Tainan 710402, Taiwan.

Department of Nursing, Chi Mei Medical Center, Tainan 710402, Taiwan.

出版信息

Diagnostics (Basel). 2023 Sep 21;13(18):3016. doi: 10.3390/diagnostics13183016.

Abstract

BACKGROUND

Numerous mortality prediction tools are currently available to assist patients with moderate to severe traumatic brain injury (TBI). However, an algorithm that utilizes various machine learning methods and employs diverse combinations of features to identify the most suitable predicting outcomes of brain injury patients in the intensive care unit (ICU) has not yet been well-established.

METHOD

Between January 2016 and December 2021, we retrospectively collected data from the electronic medical records of Chi Mei Medical Center, comprising 2260 TBI patients admitted to the ICU. A total of 42 features were incorporated into the analysis using four different machine learning models, which were then segmented into various feature combinations. The predictive performance was assessed using the area under the curve (AUC) of the receiver operating characteristic (ROC) curve and validated using the Delong test.

RESULT

The AUC for each model under different feature combinations ranged from 0.877 (logistic regression with 14 features) to 0.921 (random forest with 22 features). The Delong test indicated that the predictive performance of the machine learning models is better than that of traditional tools such as APACHE II and SOFA scores.

CONCLUSION

Our machine learning training demonstrated that the predictive accuracy of the LightGBM is better than that of APACHE II and SOFA scores. These features are readily available on the first day of patient admission to the ICU. By integrating this model into the clinical platform, we can offer clinicians an immediate prognosis for the patient, thereby establishing a bridge for educating and communicating with family members.

摘要

背景

目前有许多死亡率预测工具可用于协助中重度创伤性脑损伤(TBI)患者。然而,一种利用各种机器学习方法并采用多种特征组合来识别重症监护病房(ICU)中脑损伤患者最合适预测结果的算法尚未得到很好的确立。

方法

在2016年1月至2021年12月期间,我们回顾性收集了奇美医疗中心电子病历中的数据,包括2260名入住ICU的TBI患者。使用四种不同的机器学习模型将总共42个特征纳入分析,然后将其分割成各种特征组合。使用受试者操作特征(ROC)曲线的曲线下面积(AUC)评估预测性能,并使用德龙检验进行验证。

结果

不同特征组合下每个模型的AUC范围为0.877(具有14个特征的逻辑回归)至0.921(具有22个特征的随机森林)。德龙检验表明,机器学习模型的预测性能优于APACHE II和SOFA评分等传统工具。

结论

我们的机器学习训练表明,LightGBM的预测准确性优于APACHE II和SOFA评分。这些特征在患者入住ICU的第一天即可获得。通过将该模型集成到临床平台中,我们可以为临床医生提供患者的即时预后,从而为与家属进行教育和沟通搭建桥梁。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/32a0/10528289/b2f4b3a98589/diagnostics-13-03016-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验