Corzo-Gómez Josselin, Guzmán-Aquino Susana, Vargas-De-León Cruz, Megchún-Hernández Mauricio, Briones-Aranda Alfredo
Escuela de Ciencias Químicas Sede Ocozocoautla, Universidad Autónoma de Chiapas, Ocozocoautla de Espinosa 29140, Mexico.
Facultad de Medicina Humana, Universidad Autónoma de Chiapas, Tuxtla Gutiérrez 29050, Mexico.
Children (Basel). 2023 Sep 5;10(9):1508. doi: 10.3390/children10091508.
The current contribution aimed to evaluate the capacity of the naive Bayes classifier to predict the progression of dengue fever to severe infection in children based on a defined set of clinical conditions and laboratory parameters. This case-control study was conducted by reviewing patient files in two public hospitals in an endemic area in Mexico. All 99 qualifying files showed a confirmed diagnosis of dengue. The 32 cases consisted of patients who entered the intensive care unit, while the 67 control patients did not require intensive care. The naive Bayes classifier could identify factors predictive of severe dengue, evidenced by 78% sensitivity, 91% specificity, a positive predictive value of 8.7, a negative predictive value of 0.24, and a global yield of 0.69. The factors that exhibited the greatest predictive capacity in the model were seven clinical conditions (tachycardia, respiratory failure, cold hands and feet, capillary leak leading to the escape of blood plasma, dyspnea, and alterations in consciousness) and three laboratory parameters (hypoalbuminemia, hypoproteinemia, and leukocytosis). Thus, the present model showed a predictive and adaptive capacity in a small pediatric population. It also identified attributes (i.e., hypoalbuminemia and hypoproteinemia) that may strengthen the WHO criteria for predicting progression to severe dengue.
本研究旨在评估朴素贝叶斯分类器基于一组特定的临床症状和实验室参数预测儿童登革热进展为严重感染的能力。本病例对照研究通过查阅墨西哥一个流行地区两家公立医院的患者档案进行。所有99份符合条件的档案均显示确诊为登革热。32例为进入重症监护病房的患者,67例对照患者不需要重症监护。朴素贝叶斯分类器能够识别预测严重登革热的因素,其灵敏度为78%,特异度为91%,阳性预测值为8.7,阴性预测值为0.24,总体有效率为0.69。在该模型中显示出最大预测能力的因素是七种临床症状(心动过速、呼吸衰竭、手脚冰凉、导致血浆渗出的毛细血管渗漏、呼吸困难和意识改变)和三个实验室参数(低白蛋白血症、低蛋白血症和白细胞增多)。因此,本模型在一小部分儿科人群中显示出预测和适应能力。它还识别出了可能强化世界卫生组织预测进展为严重登革热标准的属性(即低白蛋白血症和低蛋白血症)。