Suppr超能文献

匈牙利不确定风险乳腺癌患者中应用微阵列 50(PAM50)基因表达分类器的预测分析:连续 5 年的经验。

The Prediction Analysis of Microarray 50 (PAM50) Gene Expression Classifier Utilized in Indeterminate-Risk Breast Cancer Patients in Hungary: A Consecutive 5-Year Experience.

机构信息

Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, H-1083 Budapest, Hungary.

Department of Internal Medicine and Hematology, Semmelweis University, H-1088 Budapest, Hungary.

出版信息

Genes (Basel). 2023 Aug 28;14(9):1708. doi: 10.3390/genes14091708.

Abstract

BACKGROUND

Breast cancer has been categorized into molecular subtypes using immunohistochemical staining (IHC) and fluorescence in situ hybridization (FISH) since the early 2000s. However, recent research suggests that gene expression testing, specifically Prosigna Prediction Analysis of Microarray 50 (PAM50), provides more accurate classification methods. In this retrospective study, we compared the results of IHC/FISH and PAM50 testing. We also examined the impact of various PAM50 parameters on overall survival (OS) and progression-free survival (PFS).

RESULTS

We analyzed 42 unilateral breast cancer samples, with 18 classified as luminal A, 10 as luminal B, 8 as Human epidermal growth factor receptor 2 (HER2)-positive, and 6 as basal-like using PAM50. Interestingly, 17 out of the 42 samples (40.47%) showed discordant results between histopathological assessment and the PAM50 classifier. While routine IHC/FISH resulted in classification differences for a quarter to a third of samples within each subtype, all basal-like tumors were misclassified. Hormone receptor-positive tumors (hazard rate: 8.7803; = 0.0085) and patients who had higher 10-year recurrence risk scores (hazard rate: 1.0539; = 0.0201) had shorter OS and PFS.

CONCLUSIONS

Our study supports the existing understanding of molecular subtypes in breast cancer and emphasizes the overlap between clinical characteristics and molecular subtyping. These findings underscore the value of gene expression profiling, such as PAM50, in improving treatment decisions for breast cancer patients.

摘要

背景

自 21 世纪初以来,乳腺癌已经通过免疫组织化学染色(IHC)和荧光原位杂交(FISH)被分类为分子亚型。然而,最近的研究表明,基因表达测试,特别是 Prosigna 预测分析微阵列 50(PAM50),提供了更准确的分类方法。在这项回顾性研究中,我们比较了 IHC/FISH 和 PAM50 检测的结果。我们还研究了各种 PAM50 参数对总生存期(OS)和无进展生存期(PFS)的影响。

结果

我们分析了 42 例单侧乳腺癌样本,其中 18 例为 luminal A 型,10 例为 luminal B 型,8 例为人类表皮生长因子受体 2(HER2)阳性,6 例为基底样型,使用 PAM50 进行分类。有趣的是,在 42 个样本中,有 17 个(40.47%)样本的组织病理学评估和 PAM50 分类器之间存在不一致的结果。虽然常规 IHC/FISH 导致每个亚型内四分之一至三分之一的样本出现分类差异,但所有基底样肿瘤均被错误分类。激素受体阳性肿瘤(危险比:8.7803;P=0.0085)和具有更高 10 年复发风险评分的患者(危险比:1.0539;P=0.0201)的 OS 和 PFS 更短。

结论

我们的研究支持乳腺癌分子亚型的现有认识,并强调临床特征与分子分型之间的重叠。这些发现强调了基因表达谱分析(如 PAM50)在改善乳腺癌患者治疗决策方面的价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efab/10530528/63d0ca44e9d4/genes-14-01708-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验