量子电动力学相干与应激:量子生物学基础。
Quantum Electrodynamics Coherence and Hormesis: Foundations of Quantum Biology.
机构信息
Department of Biosciences & Medical Biology, University of Salzburg, A-5020 Salzburg, Austria.
Prototyping Unit, Edge-Institute, ER-System Mechatronics, A-5440 Golling, Austria.
出版信息
Int J Mol Sci. 2023 Sep 12;24(18):14003. doi: 10.3390/ijms241814003.
"Quantum biology" (QB) is a promising theoretical approach addressing questions about how living systems are able to unfold dynamics that cannot be solved on a chemical basis or seem to violate some fundamental laws (e.g., thermodynamic yield, morphogenesis, adaptation, autopoiesis, memory, teleology, biosemiotics). Current "quantum" approaches in biology are still very basic and "corpuscular", as these rely on a semi-classical and approximated view. We review important considerations of theory and experiments of the recent past in the field of condensed matter, water, physics of living systems, and biochemistry to join them by creating a consistent picture applicable for life sciences. Within quantum field theory (QFT), the field (also in the matter field) has the primacy whereby the particle, or "quantum", is a derivative of it. The phase of the oscillation and not the number of quanta is the most important observable of the system. Thermodynamics of open systems, symmetry breaking, fractals, and quantum electrodynamics (QED) provide a consistent picture of condensed matter, liquid water, and living matter. Coherence, resonance-driven biochemistry, and ion cyclotron resonance (Liboff-Zhadin effect) emerge as crucial hormetic phenomena. We offer a paradigmatic approach when dealing with living systems in order to enrich and ultimately better understand the implications of current research activities in the field of life sciences.
“量子生物学”(QB)是一种有前途的理论方法,用于解决关于生命系统如何能够展开不能仅基于化学基础解决或似乎违反某些基本定律(例如热力学产量、形态发生、适应、自组织、记忆、目的论、生物符号学)的动力学问题。目前生物学中的“量子”方法仍然非常基础且“粒子性”,因为这些方法依赖于半经典和近似的观点。我们回顾了凝聚态物质、水、生命系统物理学和生物化学领域过去的理论和实验的重要考虑因素,通过创建一个适用于生命科学的一致图景将它们结合起来。在量子场论(QFT)中,场(也在物质场中)具有首要地位,其中粒子或“量子”是它的导数。系统最重要的可观测量是振荡的相位而不是量子数。开放系统热力学、对称性破缺、分形和量子电动力学(QED)为凝聚态物质、液态水和生命物质提供了一致的图景。相干、共振驱动的生物化学和离子回旋共振(利博夫-扎丹效应)作为关键的兴奋现象出现。当处理生命系统时,我们提供了一种典范的方法,以丰富并最终更好地理解生命科学领域当前研究活动的意义。
相似文献
Int J Mol Sci. 2023-9-12
Homeopathy. 2019-8
Int J Mol Sci. 2024-3-29
J Mol Model. 2018-8-29
Riv Biol. 2010
J Phys Chem Lett. 2019-9-19
Homeopathy. 2014-1
引用本文的文献
Int J Mol Sci. 2024-3-29
本文引用的文献
Int J Mol Sci. 2023-2-17
Cold Spring Harb Perspect Biol. 2022-5-17
J R Soc Interface. 2018-11-14
J Acupunct Meridian Stud. 2019-2
Microb Cell. 2014-4-23
Electromagn Biol Med. 2017