Suppr超能文献

基于单细胞RNA测序图谱鉴定皮肤中的细胞标志物及其表达模式。

Identification of Cell Markers and Their Expression Patterns in Skin Based on Single-Cell RNA-Sequencing Profiles.

作者信息

Zhou Xianchao, Ding Shijian, Wang Deling, Chen Lei, Feng Kaiyan, Huang Tao, Li Zhandong, Cai Yudong

机构信息

School of Life Sciences, Shanghai University, Shanghai 200444, China.

Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.

出版信息

Life (Basel). 2022 Apr 7;12(4):550. doi: 10.3390/life12040550.

Abstract

Atopic dermatitis and psoriasis are members of a family of inflammatory skin disorders. Cellular immune responses in skin tissues contribute to the development of these diseases. However, their underlying immune mechanisms remain to be fully elucidated. We developed a computational pipeline for analyzing the single-cell RNA-sequencing profiles of the Human Cell Atlas skin dataset to investigate the pathological mechanisms of skin diseases. First, we applied the maximum relevance criterion and the Boruta feature selection method to exclude irrelevant gene features from the single-cell gene expression profiles of inflammatory skin disease samples and healthy controls. The retained gene features were ranked by using the Monte Carlo feature selection method on the basis of their importance, and a feature list was compiled. This list was then introduced into the incremental feature selection method that combined the decision tree and random forest algorithms to extract important cell markers and thus build excellent classifiers and decision rules. These cell markers and their expression patterns have been analyzed and validated in recent studies and are potential therapeutic and diagnostic targets for skin diseases because their expression affects the pathogenesis of inflammatory skin diseases.

摘要

特应性皮炎和银屑病是炎症性皮肤病家族的成员。皮肤组织中的细胞免疫反应促成了这些疾病的发展。然而,它们潜在的免疫机制仍有待充分阐明。我们开发了一种计算流程,用于分析人类细胞图谱皮肤数据集的单细胞RNA测序图谱,以研究皮肤疾病的病理机制。首先,我们应用最大相关性标准和Boruta特征选择方法,从炎症性皮肤病样本和健康对照的单细胞基因表达谱中排除不相关的基因特征。通过使用蒙特卡罗特征选择方法,根据保留基因特征的重要性对其进行排序,并编制了一个特征列表。然后将该列表引入结合决策树和随机森林算法的增量特征选择方法中,以提取重要的细胞标志物,从而构建出色的分类器和决策规则。这些细胞标志物及其表达模式在最近的研究中已得到分析和验证,并且是皮肤疾病潜在的治疗和诊断靶点,因为它们的表达会影响炎症性皮肤病的发病机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a1cf/9025372/eebd7aa51354/life-12-00550-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验