Suppr超能文献

利用转录组图谱和机器学习方法预测心脏细胞类型

Predicting Heart Cell Types by Using Transcriptome Profiles and a Machine Learning Method.

作者信息

Ding Shijian, Wang Deling, Zhou Xianchao, Chen Lei, Feng Kaiyan, Xu Xianling, Huang Tao, Li Zhandong, Cai Yudong

机构信息

School of Life Sciences, Shanghai University, Shanghai 200444, China.

State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Department of Medical Imaging, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.

出版信息

Life (Basel). 2022 Jan 31;12(2):228. doi: 10.3390/life12020228.

Abstract

The heart is an essential organ in the human body. It contains various types of cells, such as cardiomyocytes, mesothelial cells, endothelial cells, and fibroblasts. The interactions between these cells determine the vital functions of the heart. Therefore, identifying the different cell types and revealing the expression rules in these cell types are crucial. In this study, multiple machine learning methods were used to analyze the heart single-cell profiles with 11 different heart cell types. The single-cell profiles were first analyzed via light gradient boosting machine method to evaluate the importance of gene features on the profiling dataset, and a ranking feature list was produced. This feature list was then brought into the incremental feature selection method to identify the best features and build the optimal classifiers. The results suggested that the best decision tree (DT) and random forest classification models achieved the highest weighted F1 scores of 0.957 and 0.981, respectively. The selected features, such as NPPA, LAMA2, DLC1, and the classification rules extracted from the optimal DT classifier played a crucial role in cardiac structure and function in recent research and enrichment analysis. In particular, some lncRNAs (LINC02019, NEAT1) were found to be quite important for the recognition of different cardiac cell types. In summary, these findings provide a solid academic foundation for the development of molecular diagnostics and biomarker discovery for cardiac diseases.

摘要

心脏是人体中的重要器官。它包含多种类型的细胞,如心肌细胞、间皮细胞、内皮细胞和成纤维细胞。这些细胞之间的相互作用决定了心脏的重要功能。因此,识别不同的细胞类型并揭示这些细胞类型中的表达规律至关重要。在本研究中,使用了多种机器学习方法来分析具有11种不同心脏细胞类型的心脏单细胞图谱。首先通过轻梯度提升机方法分析单细胞图谱,以评估基因特征在图谱数据集上的重要性,并生成一个特征排名列表。然后将该特征列表引入增量特征选择方法,以识别最佳特征并构建最优分类器。结果表明,最佳决策树(DT)和随机森林分类模型分别获得了0.957和0.981的最高加权F1分数。所选特征,如NPPA、LAMA2、DLC1,以及从最优DT分类器中提取的分类规则,在最近的研究和富集分析中对心脏结构和功能起着至关重要的作用。特别是,发现一些长链非编码RNA(LINC02019、NEAT1)对于识别不同的心脏细胞类型非常重要。总之,这些发现为心脏病分子诊断和生物标志物发现的发展提供了坚实的学术基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e06/8877019/df3074574f48/life-12-00228-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验