Coello Victor, Abdulkareem Mas-Ud A, Garcia-Ortiz Cesar E, Sosa-Sánchez Citlalli T, Téllez-Limón Ricardo, Peña-Gomar Marycarmen
Centro de Investigación Científica y de Educación Superior de Ensenada, Unidad Monterrey, Alianza Centro 504, PIIT, Apodaca 66629, Mexico.
Facultad de Ciencias Físico Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Avenida Francisco J. Múgica s/n, Ciudad Universitaria, Morelia 58030, Mexico.
Micromachines (Basel). 2023 Aug 31;14(9):1713. doi: 10.3390/mi14091713.
In this study we investigate the optical properties of a 2D-gap surface plasmon metasurface composed of gold nanoblocks (nanoantennas) arranged in a metal-dielectric configuration. This novel structure demonstrates the capability of generating simultaneous multi-plasmonic resonances and offers tunability within the near-infrared domain. Through finite difference time domain (FDTD) simulations, we analyze the metasurface's reflectance spectra for various lattice periods and identify two distinct dips with near-zero reflectance, indicative of resonant modes. Notably, the broader dip at 1150 nm exhibits consistent behavior across all lattice periodicities, attributed to a Fano-type hybridization mechanism originating from the overlap between localized surface plasmons (LSPs) of metallic nanoblocks and surface plasmon polaritons (SPPs) of the underlying metal layer. Additionally, we investigate the influence of dielectric gap thickness on the gap surface plasmon resonance and observe a blue shift for smaller gaps and a spectral red shift for gaps larger than 100 nm. The dispersion analysis of resonance wavelengths reveals an anticrossing region, indicating the hybridization of localized and propagating modes at wavelengths around 1080 nm with similar periodicities. The simplicity and tunability of our metasurface design hold promise for compact optical platforms based on reflection mode operation. Potential applications include multi-channel biosensors, second-harmonic generation, and multi-wavelength surface-enhanced spectroscopy.
在本研究中,我们研究了一种由排列成金属-电介质结构的金纳米块(纳米天线)组成的二维间隙表面等离子体超表面的光学特性。这种新颖的结构展示了产生同时多等离子体共振的能力,并在近红外域内提供了可调谐性。通过时域有限差分(FDTD)模拟,我们分析了超表面在各种晶格周期下的反射光谱,并识别出两个反射率接近零的明显凹陷,这表明存在共振模式。值得注意的是,在1150 nm处较宽的凹陷在所有晶格周期中都表现出一致的行为,这归因于一种法诺型杂化机制,该机制源于金属纳米块的局域表面等离子体(LSP)与底层金属层的表面等离子体激元(SPP)之间的重叠。此外,我们研究了电介质间隙厚度对间隙表面等离子体共振的影响,观察到较小间隙出现蓝移,而大于100 nm的间隙出现光谱红移。共振波长的色散分析揭示了一个反交叉区域,表明在波长约1080 nm且具有相似周期时,局域模式和传播模式发生了杂化。我们超表面设计的简单性和可调谐性为基于反射模式操作的紧凑型光学平台带来了希望。潜在应用包括多通道生物传感器、二次谐波产生和多波长表面增强光谱学。