文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

工程化由临床批准药物组成的自组装纳米药物用于增强肿瘤纳米治疗

Engineering Self-Assembled Nanomedicines Composed of Clinically Approved Medicines for Enhanced Tumor Nanotherapy.

作者信息

Jiang Quzi, Yu Luodan, Chen Yu

机构信息

Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.

University of Chinese Academy of Sciences, Beijing 100049, China.

出版信息

Nanomaterials (Basel). 2023 Sep 5;13(18):2499. doi: 10.3390/nano13182499.


DOI:10.3390/nano13182499
PMID:37764528
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10534536/
Abstract

The traditional nanocarriers are typically constructed to deliver anticancer agents for improving drug bioavailability and enhancing chemotherapeutic efficacy, but this strategy suffers from the critical issue of nanocarrier biosafety that hinders further clinical translation. In this work, a unique nanomedicine (PTX@ICG) has been rationally constructed by combining two clinically approved agents, i.e., paclitaxel (PTX) and indocyanine green (ICG), by a facile ultrasound-assisted self-assembly methodology. The formation of the nanostructure can effectively increase the enrichment of PTX and ICG molecules in the tumor site, and improve the utilization factor of hydrophobic PTX. Moreover, since the molecule interaction in PTX@ICG is mainly Van der Waals forces, the self-assembled structure can be spontaneously dissociated under laser irradiation and release PTX in situ to achieve safe tumor-targeted chemotherapy. Simultaneously, the released ICG can act as photothermic agents for photothermal therapy (PTT), thus combining chemotherapy and PTT to obtain an enhanced tumor nanotherapy via facile self-assembly. The synergistic chemo/photothermal tumor nanotherapy achieved the efficient tumor cell-killing effect and tumor-ablation ability, as systematically demonstrated both in vitro and in vivo. This work provides a distinct paradigm of the self-assembled nanomedicine design for effectively improving the drug bioavailability to achieve high antitumor efficacy.

摘要

传统的纳米载体通常被构建用于递送抗癌药物,以提高药物的生物利用度并增强化疗效果,但这种策略存在纳米载体生物安全性这一关键问题,阻碍了其进一步的临床转化。在这项工作中,通过一种简便的超声辅助自组装方法,将两种临床批准的药物,即紫杉醇(PTX)和吲哚菁绿(ICG),合理构建了一种独特的纳米药物(PTX@ICG)。纳米结构的形成可以有效地增加PTX和ICG分子在肿瘤部位的富集,并提高疏水性PTX的利用效率。此外,由于PTX@ICG中的分子相互作用主要是范德华力,自组装结构在激光照射下可以自发解离并原位释放PTX,以实现安全的肿瘤靶向化疗。同时,释放出的ICG可以作为光热治疗(PTT)的光热剂,从而通过简便的自组装将化疗和PTT相结合,获得增强的肿瘤纳米治疗效果。体内外系统研究均表明,协同化疗/光热肿瘤纳米治疗实现了高效的肿瘤细胞杀伤效果和肿瘤消融能力。这项工作为自组装纳米药物设计提供了一种独特的范例,可有效提高药物生物利用度以实现高抗肿瘤疗效。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff4c/10534536/a2fb9946956e/nanomaterials-13-02499-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff4c/10534536/4211b7371bb8/nanomaterials-13-02499-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff4c/10534536/e0c3cb58ec49/nanomaterials-13-02499-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff4c/10534536/de8a29f870f8/nanomaterials-13-02499-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff4c/10534536/a2fb9946956e/nanomaterials-13-02499-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff4c/10534536/4211b7371bb8/nanomaterials-13-02499-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff4c/10534536/e0c3cb58ec49/nanomaterials-13-02499-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff4c/10534536/de8a29f870f8/nanomaterials-13-02499-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff4c/10534536/a2fb9946956e/nanomaterials-13-02499-g004.jpg

相似文献

[1]
Engineering Self-Assembled Nanomedicines Composed of Clinically Approved Medicines for Enhanced Tumor Nanotherapy.

Nanomaterials (Basel). 2023-9-5

[2]
Folate-receptor-targeted laser-activable poly(lactide--glycolic acid) nanoparticles loaded with paclitaxel/indocyanine green for photoacoustic/ultrasound imaging and chemo/photothermal therapy.

Int J Nanomedicine. 2018-9-6

[3]
Chemotherapeutic drug-photothermal agent co-self-assembling nanoparticles for near-infrared fluorescence and photoacoustic dual-modal imaging-guided chemo-photothermal synergistic therapy.

J Control Release. 2017-5-10

[4]
Dual-targeted delivery of paclitaxel and indocyanine green with aptamer-modified ferritin for synergetic chemo-phototherapy.

Colloids Surf B Biointerfaces. 2023-9

[5]
Carrier-free nanodrugs for in vivo NIR bioimaging and chemo-photothermal synergistic therapy.

J Mater Chem B. 2019-9-4

[6]
Bubble-generating polymersomes loaded with both indocyanine green and doxorubicin for effective chemotherapy combined with photothermal therapy.

Acta Biomater. 2018-5-21

[7]
Multifunctional Mesoporous Polydopamine With Hydrophobic Paclitaxel For Photoacoustic Imaging-Guided Chemo-Photothermal Synergistic Therapy.

Int J Nanomedicine. 2019-11-4

[8]
"Navigate-dock-activate" anti-tumor strategy: Tumor micromilieu charge-switchable, hierarchically activated nanoplatform with ultrarapid tumor-tropic accumulation for trackable photothermal/chemotherapy.

Theranostics. 2019-4-13

[9]
Gene/paclitaxel co-delivering nanocarriers prepared by framework-induced self-assembly for the inhibition of highly drug-resistant tumors.

Acta Biomater. 2020-2

[10]
Computer-assisted engineering of programmed drug releasing multilayer nanomedicine via indomethacin-mediated ternary complex for therapy against a multidrug resistant tumor.

Acta Biomater. 2019-7-22

引用本文的文献

[1]
Global research and current trends on nanotherapy in lung cancer research: a bibliometric analysis of 20 years.

Discov Oncol. 2024-10-9

[2]
Nanotherapy to Reshape the Tumor Microenvironment: A New Strategy for Prostate Cancer Treatment.

ACS Omega. 2024-6-12

[3]
Cytotoxicity of PEG-Coated Gold and Gold-Iron Alloy Nanoparticles: ROS or Ferroptosis?

Nanomaterials (Basel). 2023-11-29

本文引用的文献

[1]
Platinum-Coordinated Engineered Nanoreactors with O Self-Amplificationand On-Demand Cascade Chemo-Drug Synthesis for Self-Reinforcing Hypoxic Oncotherapy.

ACS Appl Mater Interfaces. 2023-4-12

[2]
Diffusion-mediated carving of interior topologies of all-natural protein nanoparticles to tailor sustained drug release for effective breast cancer therapy.

Biomaterials. 2023-4

[3]
A Ferroptosis-Inducing and Leukemic Cell-Targeting Drug Nanocarrier Formed by Redox-Responsive Cysteine Polymer for Acute Myeloid Leukemia Therapy.

ACS Nano. 2023-2-28

[4]
Exploring the drug loading mechanism of photoactive inorganic nanocarriers through molecular dynamics simulations.

Nanoscale. 2021-8-14

[5]
The length of disulfide bond-containing linkages impacts the oral absorption and antitumor activity of paclitaxel prodrug-loaded nanoemulsions.

Nanoscale. 2021-6-17

[6]
Electron Donor-Acceptor Effect-Induced Organic/Inorganic Nanohybrids with Low Energy Gap for Highly Efficient Photothermal Therapy.

ACS Appl Mater Interfaces. 2021-4-21

[7]
Sequential Release of Pooled siRNAs and Paclitaxel by Aptamer-Functionalized Shell-Core Nanoparticles to Overcome Paclitaxel Resistance of Prostate Cancer.

ACS Appl Mater Interfaces. 2021-3-31

[8]
Stimulus-cleavable chemistry in the field of controlled drug delivery.

Chem Soc Rev. 2021-4-26

[9]
Photodynamic Therapy in Combination with Sorafenib for Enhanced Immunotherapy of Lung Cancer.

J Biomed Nanotechnol. 2020-8-1

[10]
Core-Shell Nanosystems for Self-Activated Drug-Gene Combinations against Triple-Negative Breast Cancer.

ACS Appl Mater Interfaces. 2020-12-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索