Lorentzen Aleksander Bach, Bouatou Mehdi, Chacon Cyril, Dappe Yannick J, Lagoute Jérôme, Brandbyge Mads
Department of Physics, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark.
Laboratoire Matériaux et Phénomènes Quantiques, CNRS-Université Paris Cité, 10 Rue Alice Domon et Léonie Duquet, CEDEX 13, 75205 Paris, France.
Nanomaterials (Basel). 2023 Sep 14;13(18):2556. doi: 10.3390/nano13182556.
It has recently been demonstrated how the nitrogen dopant concentration in graphene can be controlled spatially on the nano-meter scale using a molecular mask. This technique may be used to create ballistic electron optics-like structures of high/low doping regions; for example, to focus electron beams, harnessing the quantum wave nature of the electronic propagation. Here, we employ large-scale Greens function transport calculations based on a tight-binding approach. We first benchmark different tight-binding models of nitrogen in graphene with parameters based on density functional theory (DFT) and the virtual crystal approximation (VCA). Then, we study theoretically how the random distribution within the masked regions and the discreteness of the nitrogen scattering centers impact the transport behavior of sharp n-p and n-n' interfaces formed by different, realistic nitrogen concentrations. We investigate how constrictions for the current can be realized by patterned high/low doping regions with experimentally feasible nitrogen concentrations. The constrictions can guide the electronic current, while the quantized conductance is significantly washed out due to the nitrogen scattering. The implications for device design is that a p-n junction with nitrogen corrugation should still be viable for current focusing. Furthermore, a guiding channel with less nitrogen in the conducting canal preserves more features of quantized conductance and, therefore, its low-noise regime.
最近已经证明,使用分子掩膜可以在纳米尺度上对石墨烯中的氮掺杂浓度进行空间控制。该技术可用于创建高/低掺杂区域的类似弹道电子光学的结构;例如,利用电子传播的量子波特性来聚焦电子束。在这里,我们采用基于紧束缚方法的大规模格林函数输运计算。我们首先用基于密度泛函理论(DFT)和虚拟晶体近似(VCA)的参数对石墨烯中氮的不同紧束缚模型进行基准测试。然后,我们从理论上研究掩膜区域内的随机分布以及氮散射中心的离散性如何影响由不同实际氮浓度形成的尖锐n-p和n-n'界面的输运行为。我们研究如何通过具有实验可行氮浓度的图案化高/低掺杂区域来实现对电流的限制。这些限制可以引导电子电流,而由于氮散射,量子化电导会被显著消除。对器件设计的影响是,具有氮波纹的p-n结对于电流聚焦仍然可行。此外,导电通道中氮较少的引导通道保留了更多量子化电导的特征,因此保留了其低噪声状态。