Prociak Aleksander, Kucała Michał, Kurańska Maria, Barczewski Mateusz
Department of Polymer Chemistry and Technology, Faculty of Chemical Engineering and Technology, Tadeusz Kosciuszko Cracow University of Technology, Warszawska 24, 31-155 Krakow, Poland.
Institute of Materials Technology, Poznan University of Technology, Piotrowo 3, 61-138 Poznan, Poland.
Polymers (Basel). 2023 Sep 5;15(18):3660. doi: 10.3390/polym15183660.
New rigid polyurethane foams (RPURFs) modified with two types of bio-polyols based on rapeseed oil were elaborated and characterized. The effect of the bio-polyols with different functionality, synthesized by the epoxidation and oxirane ring-opening method, on the cell structure and selected properties of modified foams was evaluated. As oxirane ring-opening agents, 1-hexanol and 1.6-hexanediol were used to obtain bio-polyols with different functionality and hydroxyl numbers. Bio-polyols in different ratios were used to modify the polyurethane (PUR) composition, replacing 40 wt.% petrochemical polyol. The mass ratio of the used bio-polyols (1:0, 3:1, 1:1, 1:3, 0:1) affected the course of the foaming process of the PUR composition as well as the cellular structure and the physical and mechanical properties of the obtained foams. In general, the modification of the reference PUR system with the applied bio-polyols improved the cellular structure of the foam, reducing the size of the cells. Replacing the petrochemical polyol with the bio-polyols did not cause major differences in the apparent density (40-43 kg/m), closed-cell content (87-89%), thermal conductivity (25-26 mW⋅(m⋅K)), brittleness (4.7-7.5%), or dimensional stability (<0.7%) of RPURFs. The compressive strength at 10% deformation was in the range of 190-260 and 120-190 kPa, respectively, for directions parallel and perpendicular to the direction of foam growth. DMA analysis confirmed that an increase in the bio-polyol of low functionality in the bio-polyol mixture reduced the compressive strength of the modified foams.
制备并表征了用两种基于菜籽油的生物多元醇改性的新型硬质聚氨酯泡沫(RPURF)。评估了通过环氧化和环氧乙烷开环法合成的具有不同官能度的生物多元醇对改性泡沫泡孔结构和选定性能的影响。使用1-己醇和1,6-己二醇作为环氧乙烷开环剂,以获得具有不同官能度和羟值的生物多元醇。采用不同比例的生物多元醇对聚氨酯(PUR)组合物进行改性,替代40 wt.%的石化多元醇。所用生物多元醇的质量比(1:0、3:1、1:1、1:3、0:1)影响了PUR组合物的发泡过程,以及所得泡沫的泡孔结构和物理力学性能。总体而言,用所应用的生物多元醇对参考PUR体系进行改性改善了泡沫的泡孔结构,减小了泡孔尺寸。用生物多元醇替代石化多元醇,在RPURF的表观密度(40 - 43 kg/m³)、闭孔含量(87 - 89%)、热导率(25 - 26 mW⋅(m⋅K))、脆性(4.7 - 7.5%)或尺寸稳定性(<0.7%)方面未引起重大差异。对于平行和垂直于泡沫生长方向,10%变形时的抗压强度分别在190 - 260 kPa和120 - 190 kPa范围内。动态热机械分析(DMA)证实,生物多元醇混合物中低官能度生物多元醇含量的增加会降低改性泡沫的抗压强度。