文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

红外热成像体温测量的最佳实践:影响准确性的外部因素

Best Practices for Body Temperature Measurement with Infrared Thermography: External Factors Affecting Accuracy.

作者信息

Mazdeyasna Siavash, Ghassemi Pejman, Wang Quanzeng

机构信息

Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA.

出版信息

Sensors (Basel). 2023 Sep 21;23(18):8011. doi: 10.3390/s23188011.


DOI:10.3390/s23188011
PMID:37766064
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10536210/
Abstract

Infrared thermographs (IRTs) are commonly used during disease pandemics to screen individuals with elevated body temperature (EBT). To address the limited research on external factors affecting IRT accuracy, we conducted benchtop measurements and computer simulations with two IRTs, with or without an external temperature reference source (ETRS) for temperature compensation. The combination of an IRT and an ETRS forms a screening thermograph (ST). We investigated the effects of viewing angle (, 0-75°), ETRS set temperature (TETRS, 30-40 °C), ambient temperature (Tatm, 18-32 °C), relative humidity (RH, 15-80%), and working distance (, 0.4-2.8 m). We discovered that STs exhibited higher accuracy compared to IRTs alone. Across the tested ranges of Tatm and RH, both IRTs exhibited absolute measurement errors of less than 0.97 °C, while both STs maintained absolute measurement errors of less than 0.12 °C. The optimal TETRS for EBT detection was 36-37 °C. When was below 30°, the two STs underestimated calibration source (CS) temperature (TCS) of less than 0.05 °C. The computer simulations showed absolute temperature differences of up to 0.28 °C and 0.04 °C between estimated and theoretical temperatures for IRTs and STs, respectively, considering of 0.2-3.0 m, Tatm of 15-35 °C, and RH of 5-95%. The results highlight the importance of precise calibration and environmental control for reliable temperature readings and suggest proper ranges for these factors, aiming to enhance current standard documents and best practice guidelines. These insights enhance our understanding of IRT performance and their sensitivity to various factors, thereby facilitating the development of best practices for accurate EBT measurement.

摘要

在疾病大流行期间,红外热成像仪(IRT)通常用于筛查体温升高(EBT)的个体。为了解决关于影响IRT准确性的外部因素的研究有限的问题,我们使用两台IRT进行了台式测量和计算机模拟,有无外部温度参考源(ETRS)进行温度补偿。IRT和ETRS的组合形成了筛查热成像仪(ST)。我们研究了视角(,0-75°)、ETRS设定温度(TETRS,30-40°C)、环境温度(Tatm,18-32°C)、相对湿度(RH,15-80%)和工作距离(,0.4-2.8 m)的影响。我们发现,与单独的IRT相比,ST表现出更高的准确性。在测试的Tatm和RH范围内,两台IRT的绝对测量误差均小于0.97°C,而两台ST的绝对测量误差均保持在小于0.12°C。用于EBT检测的最佳TETRS为36-37°C。当低于30°时,两台ST低估校准源(CS)温度(TCS)小于0.05°C。计算机模拟显示,考虑到0.2-3.0 m的、15-35°C的Tatm和5-95%的RH,IRT和ST的估计温度与理论温度之间的绝对温度差分别高达0.28°C和0.04°C。结果强调了精确校准和环境控制对于可靠温度读数的重要性,并提出了这些因素的适当范围,旨在加强当前的标准文件和最佳实践指南。这些见解增强了我们对IRT性能及其对各种因素敏感性的理解,从而有助于制定准确EBT测量的最佳实践。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6276/10536210/d51e9e6426ba/sensors-23-08011-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6276/10536210/5a0d48a58428/sensors-23-08011-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6276/10536210/d0b1f58d7512/sensors-23-08011-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6276/10536210/bb0886fd7b06/sensors-23-08011-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6276/10536210/09e66910d750/sensors-23-08011-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6276/10536210/225c8e844068/sensors-23-08011-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6276/10536210/f14734e85d24/sensors-23-08011-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6276/10536210/abfa993f78e1/sensors-23-08011-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6276/10536210/faf067cdbe07/sensors-23-08011-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6276/10536210/4299423b979e/sensors-23-08011-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6276/10536210/d51e9e6426ba/sensors-23-08011-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6276/10536210/5a0d48a58428/sensors-23-08011-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6276/10536210/d0b1f58d7512/sensors-23-08011-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6276/10536210/bb0886fd7b06/sensors-23-08011-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6276/10536210/09e66910d750/sensors-23-08011-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6276/10536210/225c8e844068/sensors-23-08011-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6276/10536210/f14734e85d24/sensors-23-08011-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6276/10536210/abfa993f78e1/sensors-23-08011-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6276/10536210/faf067cdbe07/sensors-23-08011-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6276/10536210/4299423b979e/sensors-23-08011-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6276/10536210/d51e9e6426ba/sensors-23-08011-g010.jpg

相似文献

[1]
Best Practices for Body Temperature Measurement with Infrared Thermography: External Factors Affecting Accuracy.

Sensors (Basel). 2023-9-21

[2]
Infrared Thermography for Measuring Elevated Body Temperature: Clinical Accuracy, Calibration, and Evaluation.

Sensors (Basel). 2021-12-29

[3]
Non-Invasive Cattle Body Temperature Measurement Using Infrared Thermography and Auxiliary Sensors.

Sensors (Basel). 2021-4-1

[4]
Best practices for standardized performance testing of infrared thermographs intended for fever screening.

PLoS One. 2018-9-19

[5]
Globally deployed COVID-19 fever screening devices using infrared thermographs consistently normalize high readings to afebrile range.

J Biomed Opt. 2021-3

[6]
Infrared Thermography with High Accuracy in a Neonatal Incubator.

Ann Biomed Eng. 2022-5

[7]
Clinical evaluation of fever-screening thermography: impact of consensus guidelines and facial measurement location.

J Biomed Opt. 2020-9

[8]
Correlation and agreement between infrared thermography and a thermometer for equine body temperature measurements.

Vet World. 2023-12

[9]
Evaluation of an infrared thermography camera for measuring body temperature in dairy calves.

JDS Commun. 2022-7-9

[10]
Influence of environmental factors on infrared eye temperature measurements in cattle.

Res Vet Sci. 2013-11-19

引用本文的文献

[1]
Patellar Tendon Thermographic Reference Values in Healthy People: A Systematic Review.

Muscles. 2024-10-18

[2]
Evaluation of Body and Udder Temperatures and Mammary Gland Health Status Throughout Lactation in Manchega Dairy Sheep.

Animals (Basel). 2025-3-9

[3]
Clinical Applications, Legal Considerations and Implementation Challenges of Smartphone-Based Thermography: A Scoping Review.

J Clin Med. 2024-11-25

[4]
Analyzing the Thermal Characteristics of Three Lining Materials for Plantar Orthotics.

Sensors (Basel). 2024-5-4

本文引用的文献

[1]
Potential of using facial thermal imaging in patient triage of flu-like syndrome during the COVID-19 pandemic crisis.

PLoS One. 2023

[2]
Can the body mass index influence the skin temperature of adolescents assessed by infrared thermography?

J Therm Biol. 2023-1

[3]
The 2022 outbreak and the pathobiology of the monkeypox virus.

J Autoimmun. 2022-7

[4]
Comparison of Infrared Thermography and Other Traditional Techniques to Assess Moisture Content of Wall Specimens.

Sensors (Basel). 2022-4-21

[5]
A Review of Infrared Thermography for Delamination Detection on Infrastructures and Buildings.

Sensors (Basel). 2022-1-6

[6]
Evaluation of skin using infrared thermal imaging for dermatology and aesthetic applications.

J Cosmet Dermatol. 2022-3

[7]
Infrared Thermography for Measuring Elevated Body Temperature: Clinical Accuracy, Calibration, and Evaluation.

Sensors (Basel). 2021-12-29

[8]
The environment has effects on infrared temperature screening for COVID-19 infection.

Am J Infect Control. 2021-11

[9]
The Role of Humidity in the Management of Premature Neonates in a Rural Incubator.

Cureus. 2021-4-10

[10]
Globally deployed COVID-19 fever screening devices using infrared thermographs consistently normalize high readings to afebrile range.

J Biomed Opt. 2021-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索