Department of Prosthodontics, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand.
Department of Mechanical Engineering, Faculty of Engineering, Chiang Mai University, Muang, Chiang Mai, Thailand.
J Prosthodont. 2024 Oct;33(8):815-823. doi: 10.1111/jopr.13776. Epub 2023 Oct 31.
The optimal configuration of a customized implant abutment plays a crucial role in promoting bone remodeling and maintaining the peri-implant gingival contour. However, the biomechanical effects of abutment configuration on bone remodeling and peri-implant tissue remain unclear. This study aimed to evaluate the influence of abutment taper configurations on bone remodeling and peri-implant tissue.
Five models with different abutment taper configurations (10°, 20°, 30°, 40°, and 50°) were analyzed using finite element analysis (FEA) to evaluate the biomechanical responses in peri-implant bone and the hydrostatic pressure in peri-implant tissue.
The results demonstrated that the rate of increase in bone density was similar in all models. On the other hand, the hydrostatic pressure in peri-implant gingiva revealed significantly different results. Model 10° showed the highest maximum and volume-averaged hydrostatic pressures (69.31 and 4.5 mmHg), whereas Model 30° demonstrated the lowest values (57.83 and 3.88 mmHg) with the lowest excessive pressure area. The area of excessive hydrostatic pressure decreased in all models as the degree of abutment taper increased from 10° to 30°. In contrast, Models 40° and 50° exhibited greater hydrostatic pressure concentration at the cervical region.
In conclusion, the abutment taper configuration had a slight effect on bone remodeling but exerted a significant effect on the peri-implant gingiva above the implant platform via hydrostatic pressure. Significant decreases in greatest and average hydrostatic pressures were observed in the peri-implant tissues of Model 30°. However, the results indicate that implant abutment tapering wider than 40° could result in a larger area of excessive hydrostatic pressure in peri-implant tissue, which could induce gingival recession.
定制种植体基台的最佳配置对于促进骨重塑和维持种植体周围龈轮廓至关重要。然而,基台配置对骨重塑和种植体周围组织的生物力学影响尚不清楚。本研究旨在评估基台锥度配置对骨重塑和种植体周围组织的影响。
使用有限元分析(FEA)对具有不同基台锥度配置(10°、20°、30°、40°和 50°)的 5 种模型进行分析,以评估种植体周围骨的生物力学响应和种植体周围组织的静水压力。
结果表明,所有模型中的骨密度增加率相似。另一方面,种植体周围龈内的静水压力显示出明显不同的结果。模型 10°显示出最高的最大和体积平均静水压力(69.31 和 4.5mmHg),而模型 30°显示出最低的值(57.83 和 3.88mmHg)和最低的过度压力区域。随着基台锥度从 10°增加到 30°,所有模型中的过度静水压力区域都减小。相比之下,模型 40°和 50°在种植体平台上方的颈部区域显示出更大的静水压力集中。
总之,基台锥度配置对骨重塑的影响较小,但通过静水压力对种植体平台上方的种植体周围龈组织有显著影响。在模型 30°中,观察到种植体周围组织中的最大和平均静水压力显著降低。然而,结果表明,基台锥度大于 40°可能会导致种植体周围组织中过度静水压力的区域增大,从而导致牙龈退缩。