Suppr超能文献

氧化还原介导的 ATG3 激活促进莱茵衣藻自噬小体的形成和自噬进程。

Redox-mediated activation of ATG3 promotes ATG8 lipidation and autophagy progression in Chlamydomonas reinhardtii.

机构信息

Instituto de Bioquímica Vegetal y Fotosíntesis (IBVF), Consejo Superior de Investigaciones Científicas (CSIC)- Universidad de Sevilla, Sevilla 41092, Spain.

出版信息

Plant Physiol. 2023 Dec 30;194(1):359-375. doi: 10.1093/plphys/kiad520.

Abstract

Autophagy is one of the main degradative pathways used by eukaryotic organisms to eliminate useless or damaged intracellular material to maintain cellular homeostasis under stress conditions. Mounting evidence indicates a strong interplay between the generation of reactive oxygen species and the activation of autophagy. Although a tight redox regulation of autophagy has been shown in several organisms, including microalgae, the molecular mechanisms underlying this control remain poorly understood. In this study, we have performed an in-depth in vitro and in vivo redox characterization of ATG3, an E2-activating enzyme involved in ATG8 lipidation and autophagosome formation, from 2 evolutionary distant unicellular model organisms: the green microalga Chlamydomonas (Chlamydomonas reinhardtii) and the budding yeast Saccharomyces cerevisiae. Our results indicated that ATG3 activity from both organisms is subjected to redox regulation since these proteins require reducing equivalents to transfer ATG8 to the phospholipid phosphatidylethanolamine. We established the catalytic Cys of ATG3 as a redox target in algal and yeast proteins and showed that the oxidoreductase thioredoxin efficiently reduces ATG3. Moreover, in vivo studies revealed that the redox state of ATG3 from Chlamydomonas undergoes profound changes under autophagy-activating stress conditions, such as the absence of photoprotective carotenoids, the inhibition of fatty acid synthesis, or high light irradiance. Thus, our results indicate that the redox-mediated activation of ATG3 regulates ATG8 lipidation under oxidative stress conditions in this model microalga.

摘要

自噬是真核生物用来消除无用或受损的细胞内物质以维持细胞在应激条件下的内稳态的主要降解途径之一。越来越多的证据表明,活性氧的产生与自噬的激活之间存在强烈的相互作用。尽管已经在包括微藻在内的几种生物体中显示出自噬的紧密氧化还原调节,但这种控制的分子机制仍知之甚少。在这项研究中,我们对来自两种进化上不同的单细胞模式生物:绿藻衣藻(Chlamydomonas reinhardtii)和 budding 酵母酿酒酵母(Saccharomyces cerevisiae)的参与 ATG8 脂质化和自噬体形成的 E2 激活酶 ATG3 进行了深入的体外和体内氧化还原特性分析。我们的结果表明,这两种生物体的 ATG3 活性都受到氧化还原调节的影响,因为这些蛋白质需要还原当量才能将 ATG8 转移到磷脂磷脂酰乙醇胺上。我们确定了藻类和酵母蛋白中 ATG3 的催化半胱氨酸是氧化还原靶标,并表明氧化还原酶硫氧还蛋白可以有效地还原 ATG3。此外,体内研究表明,在自噬激活应激条件下,如缺乏光保护类胡萝卜素、脂肪酸合成抑制或高光辐照下,衣藻 ATG3 的氧化还原状态会发生深刻变化。因此,我们的结果表明,在这种模式微藻中,氧化还原介导的 ATG3 激活调节 ATG8 脂质化在氧化应激条件下。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55c9/10756753/1a7fcba2ee7f/kiad520f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验