文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于舌象和肿瘤标志物的非小细胞肺癌不同阶段的机器学习预测模型:一项初步研究。

Machine learning prediction models for different stages of non-small cell lung cancer based on tongue and tumor marker: a pilot study.

机构信息

The Office of Academic Affairs, Shanghai, 201203, China.

College of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.

出版信息

BMC Med Inform Decis Mak. 2023 Sep 29;23(1):197. doi: 10.1186/s12911-023-02266-5.


DOI:10.1186/s12911-023-02266-5
PMID:37773123
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10542664/
Abstract

OBJECTIVE: To analyze the tongue feature of NSCLC at different stages, as well as the correlation between tongue feature and tumor marker, and investigate the feasibility of establishing prediction models for NSCLC at different stages based on tongue feature and tumor marker. METHODS: Tongue images were collected from non-advanced NSCLC patients (n = 109) and advanced NSCLC patients (n = 110), analyzed the tongue images to obtain tongue feature, and analyzed the correlation between tongue feature and tumor marker in different stages of NSCLC. On this basis, six classifiers, decision tree, logistic regression, SVM, random forest, naive bayes, and neural network, were used to establish prediction models for different stages of NSCLC based on tongue feature and tumor marker. RESULTS: There were statistically significant differences in tongue feature between the non-advanced and advanced NSCLC groups. In the advanced NSCLC group, the number of indexes with statistically significant correlations between tongue feature and tumor marker was significantly higher than in the non-advanced NSCLC group, and the correlations were stronger. Support Vector Machine (SVM), decision tree, and logistic regression among the machine learning methods performed poorly in models with different stages of NSCLC. Neural network, random forest and naive bayes had better classification efficiency for the data set of tongue feature and tumor marker and baseline. The models' classification accuracies were 0.767 ± 0.081, 0.718 ± 0.062, and 0.688 ± 0.070, respectively, and the AUCs were 0.793 ± 0.086, 0.779 ± 0.075, and 0.771 ± 0.072, respectively. CONCLUSIONS: There were statistically significant differences in tongue feature between different stages of NSCLC, with advanced NSCLC tongue feature being more closely correlated with tumor marker. Due to the limited information, single data sources including baseline, tongue feature, and tumor marker cannot be used to identify the different stages of NSCLC in this pilot study. In addition to the logistic regression method, other machine learning methods, based on tumor marker and baseline data sets, can effectively improve the differential diagnosis efficiency of different stages of NSCLC by adding tongue image data, which requires further verification based on large sample studies in the future.

摘要

目的:分析不同分期非小细胞肺癌(NSCLC)的舌象特征,以及舌象特征与肿瘤标志物的相关性,探讨基于舌象特征和肿瘤标志物建立不同分期 NSCLC 预测模型的可行性。

方法:收集非晚期 NSCLC 患者(n=109)和晚期 NSCLC 患者(n=110)的舌象图像,对舌象图像进行分析以获取舌象特征,并分析不同分期 NSCLC 中舌象特征与肿瘤标志物的相关性。在此基础上,采用决策树、逻辑回归、支持向量机、随机森林、朴素贝叶斯和神经网络等 6 种分类器,基于舌象特征和肿瘤标志物建立不同分期 NSCLC 的预测模型。

结果:非晚期和晚期 NSCLC 组之间的舌象特征存在统计学差异。晚期 NSCLC 组中舌象特征与肿瘤标志物之间具有统计学意义的指标数量明显高于非晚期 NSCLC 组,且相关性更强。在不同分期 NSCLC 的模型中,支持向量机(SVM)、决策树和逻辑回归等机器学习方法的性能较差。神经网络、随机森林和朴素贝叶斯对舌象特征和肿瘤标志物及基线数据的分类效率较高。模型的分类准确率分别为 0.767±0.081、0.718±0.062 和 0.688±0.070,AUC 分别为 0.793±0.086、0.779±0.075 和 0.771±0.072。

结论:不同分期 NSCLC 之间的舌象特征存在统计学差异,晚期 NSCLC 的舌象特征与肿瘤标志物的相关性更为密切。由于信息有限,在本研究中,单数据源包括基线、舌象特征和肿瘤标志物不能用于识别不同分期的 NSCLC。除了逻辑回归方法外,其他基于肿瘤标志物和基线数据集的机器学习方法,通过添加舌象图像数据,可有效提高不同分期 NSCLC 的鉴别诊断效率,这需要在未来的大样本研究中进一步验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbc1/10542664/a0273b1e3b5f/12911_2023_2266_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbc1/10542664/029cb5eb6d7a/12911_2023_2266_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbc1/10542664/a6690810101f/12911_2023_2266_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbc1/10542664/3ba5832733d0/12911_2023_2266_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbc1/10542664/2a8c4964379c/12911_2023_2266_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbc1/10542664/ac3c410f6d92/12911_2023_2266_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbc1/10542664/7f9de7428fda/12911_2023_2266_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbc1/10542664/190f76e5ba19/12911_2023_2266_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbc1/10542664/a0273b1e3b5f/12911_2023_2266_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbc1/10542664/029cb5eb6d7a/12911_2023_2266_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbc1/10542664/a6690810101f/12911_2023_2266_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbc1/10542664/3ba5832733d0/12911_2023_2266_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbc1/10542664/2a8c4964379c/12911_2023_2266_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbc1/10542664/ac3c410f6d92/12911_2023_2266_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbc1/10542664/7f9de7428fda/12911_2023_2266_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbc1/10542664/190f76e5ba19/12911_2023_2266_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbc1/10542664/a0273b1e3b5f/12911_2023_2266_Fig8_HTML.jpg

相似文献

[1]
Machine learning prediction models for different stages of non-small cell lung cancer based on tongue and tumor marker: a pilot study.

BMC Med Inform Decis Mak. 2023-9-29

[2]
A lung cancer risk warning model based on tongue images.

Front Physiol. 2023-6-1

[3]
A New Method for Syndrome Classification of Non-Small-Cell Lung Cancer Based on Data of Tongue and Pulse with Machine Learning.

Biomed Res Int. 2021

[4]
[Evaluation of the application value of seven tumor-associated autoantibodies in non-small cell lung cancer based on machine learning algorithms].

Zhonghua Yu Fang Yi Xue Za Zhi. 2023-11-6

[5]
Prediction of pathologic stage in non-small cell lung cancer using machine learning algorithm based on CT image feature analysis.

BMC Cancer. 2019-5-17

[6]
Study on the difference and regularity of tongue images in 309 patients with different pathological stages of non-small cell lung cancer.

Technol Health Care. 2024

[7]
Application of several machine learning algorithms for the prediction of afatinib treatment outcome in advanced-stage EGFR-mutated non-small-cell lung cancer.

Thorac Cancer. 2022-12

[8]
Combining handcrafted features with latent variables in machine learning for prediction of radiation-induced lung damage.

Med Phys. 2019-4-8

[9]
Machine learning-based radiomics strategy for prediction of cell proliferation in non-small cell lung cancer.

Eur J Radiol. 2019-6-28

[10]
Dual-Centre Harmonised Multimodal Positron Emission Tomography/Computed Tomography Image Radiomic Features and Machine Learning Algorithms for Non-small Cell Lung Cancer Histopathological Subtype Phenotype Decoding.

Clin Oncol (R Coll Radiol). 2023-11

引用本文的文献

[1]
Integrating Omics Data and AI for Cancer Diagnosis and Prognosis.

Cancers (Basel). 2024-7-3

[2]
Machine Learning for Prediction of Non-Small Cell Lung Cancer Based on Inflammatory and Nutritional Indicators in Adults: A Cross-Sectional Study.

Cancer Manag Res. 2024-5-30

本文引用的文献

[1]
A New Approach of Fatigue Classification Based on Data of Tongue and Pulse With Machine Learning.

Front Physiol. 2022-2-7

[2]
Application of computer tongue image analysis technology in the diagnosis of NAFLD.

Comput Biol Med. 2021-8

[3]
Establishment of noninvasive diabetes risk prediction model based on tongue features and machine learning techniques.

Int J Med Inform. 2021-5

[4]
A tongue features fusion approach to predicting prediabetes and diabetes with machine learning.

J Biomed Inform. 2021-3

[5]
Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries.

CA Cancer J Clin. 2021-5

[6]
Efficacy and safety of TCM combined with chemotherapy for SCLC: a systematic review and meta-analysis.

J Cancer Res Clin Oncol. 2020-8-14

[7]
Clinical Evaluation of Serum Tumor Markers in Patients With Advanced-Stage Non-Small Cell Lung Cancer Treated With Palliative Chemotherapy in China.

Front Oncol. 2020-6-5

[8]
Artificial intelligence in tongue diagnosis: Using deep convolutional neural network for recognizing unhealthy tongue with tooth-mark.

Comput Struct Biotechnol J. 2020-4-8

[9]
Multi-Task Joint Learning Model for Segmenting and Classifying Tongue Images Using a Deep Neural Network.

IEEE J Biomed Health Inform. 2020-9

[10]
Clustering-based undersampling with random over sampling examples and support vector machine for imbalanced classification of breast cancer diagnosis.

Comput Assist Surg (Abingdon). 2019-8-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索