文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

几种机器学习算法在预测晚期 EGFR 突变型非小细胞肺癌阿法替尼治疗结局中的应用。

Application of several machine learning algorithms for the prediction of afatinib treatment outcome in advanced-stage EGFR-mutated non-small-cell lung cancer.

机构信息

Division of Pulmonology, Department of Internal Medicine, The Armed Forces Goyang Hospital, Goyang, Republic of Korea.

Department of Statistics, Pusan National University, Busan, Republic of Korea.

出版信息

Thorac Cancer. 2022 Dec;13(23):3353-3361. doi: 10.1111/1759-7714.14694. Epub 2022 Oct 24.


DOI:10.1111/1759-7714.14694
PMID:36278315
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9715822/
Abstract

BACKGROUND: The present study aimed to evaluate the performance of several machine learning (ML) algorithms in predicting 1-year afatinib continuation and 2-year survival after afatinib initiation and to identify the differences in survival outcomes between ML-classified strata. METHODS: Data that were also used in the RESET study were retrospectively collected from 16 hospitals in South Korea. A stratified random sampling method was applied to split the data into training and test sets (70:30 split ratio). Clinical information, such as age, sex, tumor stage, smoking, performance status, metastasis, type of metastasis, dose adjustment, and pathologic information on EGFR mutations were inputted. Training was performed using eight ML algorithms: logistic regression, decision tree, deep neural network, random forest, support vector machine, boosting, bagging, and the naïve Bayes classifier. The model performance was assessed based on sensitivity, specificity, and accuracy. Area under the receiver operator characteristic curve (AUC) was calculated and compared between the ML models using DeLong's test. A Kaplan-Meier (KM) curve was used to visualize the identified strata obtained from the ML models. RESULTS: No significant differences in the input variables were observed between the training and test datasets. The best-performing models were support vector machine in predicting 1-year afatinib continuation (AUC 0.626) and decision tree in 2-year survival after afatinib start (AUC 0.644), although the performances of the ML models were comparable and did not display any predictive roles. KM analysis and log-rank test revealed significant differences between the strata identified from the ML model (p < 0.001) in terms of both time-on-treatment (TOT) and overall survival (OS). CONCLUSION: The performances of ML models in our study found no discernible roles in predicting afatinib-related outcomes, although the identified strata revealed different TOT and OS in the KM analysis. This implies the strength of ML in predicting the survival outcome, as well as the limitation of electronic medical record-based variables in ML algorithms. Careful consideration of variable inclusion is likely to improve the general model performance.

摘要

背景:本研究旨在评估几种机器学习(ML)算法在预测阿法替尼起始后 1 年的续用和 2 年的生存方面的性能,并确定 ML 分类层之间生存结果的差异。

方法:本研究回顾性地从韩国 16 家医院收集了也用于 RESET 研究的数据。采用分层随机抽样法将数据分为训练集和测试集(70:30 分割比)。输入的临床信息包括年龄、性别、肿瘤分期、吸烟、表现状态、转移、转移类型、剂量调整以及 EGFR 突变的病理信息。使用 8 种 ML 算法(逻辑回归、决策树、深度神经网络、随机森林、支持向量机、提升、装袋和朴素贝叶斯分类器)进行训练。基于敏感性、特异性和准确性评估模型性能。使用 DeLong 检验比较 ML 模型之间的接收器操作特征曲线(ROC)下面积(AUC)。使用 Kaplan-Meier(KM)曲线可视化从 ML 模型中获得的识别层。

结果:训练集和测试数据集之间输入变量无显著差异。支持向量机在预测阿法替尼 1 年续用方面表现最佳(AUC 0.626),决策树在阿法替尼起始后 2 年生存方面表现最佳(AUC 0.644),尽管 ML 模型的性能相当,且没有表现出任何预测作用。KM 分析和对数秩检验显示,从 ML 模型中识别出的层在治疗时间(TOT)和总生存期(OS)方面存在显著差异(p<0.001)。

结论:尽管 KM 分析中识别出的层在 TOT 和 OS 方面存在差异,但我们研究中的 ML 模型在预测阿法替尼相关结果方面没有发现明显的作用。这意味着 ML 在预测生存结果方面的优势,以及电子病历变量在 ML 算法中的局限性。仔细考虑变量的纳入可能会提高总体模型性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e03e/9715822/71105097cea3/TCA-13-3353-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e03e/9715822/02a204d19dc4/TCA-13-3353-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e03e/9715822/644c8fab9bca/TCA-13-3353-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e03e/9715822/71105097cea3/TCA-13-3353-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e03e/9715822/02a204d19dc4/TCA-13-3353-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e03e/9715822/644c8fab9bca/TCA-13-3353-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e03e/9715822/71105097cea3/TCA-13-3353-g004.jpg

相似文献

[1]
Application of several machine learning algorithms for the prediction of afatinib treatment outcome in advanced-stage EGFR-mutated non-small-cell lung cancer.

Thorac Cancer. 2022-12

[2]
Feasibility and effectiveness of afatinib for poor performance status patients with EGFR-mutation-positive non-small-cell lung cancer: a retrospective cohort study.

BMC Cancer. 2021-7-27

[3]
First-line Afatinib in Patients With Non-small-cell Lung Cancer With Uncommon EGFR Mutations in South Korea.

Anticancer Res. 2022-3

[4]
Effectiveness and Tolerability of First-Line Afatinib for Advanced EGFR-Mutant Non-Small Cell Lung Cancer in Vietnam.

Asian Pac J Cancer Prev. 2021-5-1

[5]
Sequential treatment of afatinib and osimertinib or other regimens in patients with advanced non-small-cell lung cancer harboring EGFR mutations: Results from a real-world study in South Korea.

Cancer Med. 2021-9

[6]
Afatinib versus cisplatin plus gemcitabine for first-line treatment of Asian patients with advanced non-small-cell lung cancer harbouring EGFR mutations (LUX-Lung 6): an open-label, randomised phase 3 trial.

Lancet Oncol. 2014-1-15

[7]
Real-world experience of first-line afatinib in patients with EGFR-mutant advanced NSCLC: a multicenter observational study.

BMC Cancer. 2019-9-9

[8]
Next-Generation Radiogenomics Sequencing for Prediction of EGFR and KRAS Mutation Status in NSCLC Patients Using Multimodal Imaging and Machine Learning Algorithms.

Mol Imaging Biol. 2020-8

[9]
First-line treatment of advanced epidermal growth factor receptor (EGFR) mutation positive non-squamous non-small cell lung cancer.

Cochrane Database Syst Rev. 2016-5-25

[10]
Network meta-analysis of erlotinib, gefitinib, afatinib and icotinib in patients with advanced non-small-cell lung cancer harboring EGFR mutations.

PLoS One. 2014-2-12

引用本文的文献

[1]
Multimodal prediction of tyrosine kinase inhibitors therapy outcomes in advanced EGFR-mutated NSCLC patients.

J Transl Med. 2025-8-18

[2]
Predicting early stage lung cancer recurrence and survival from combined tumor motion amplitude and radiomics on free-breathing 4D-CT.

Med Phys. 2025-3

本文引用的文献

[1]
A comparison of machine learning methods for predicting recurrence and death after curative-intent radiotherapy for non-small cell lung cancer: Development and validation of multivariable clinical prediction models.

EBioMedicine. 2022-3

[2]
Machine learning-based integration develops an immune-derived lncRNA signature for improving outcomes in colorectal cancer.

Nat Commun. 2022-2-10

[3]
Machine Learning Using Real-World and Translational Data to Improve Treatment Selection for NSCLC Patients Treated with Immunotherapy.

Cancers (Basel). 2022-1-16

[4]
Distribution, Risk Factors, and Temporal Trends for Lung Cancer Incidence and Mortality: A Global Analysis.

Chest. 2022-4

[5]
Sequential treatment of afatinib and osimertinib or other regimens in patients with advanced non-small-cell lung cancer harboring EGFR mutations: Results from a real-world study in South Korea.

Cancer Med. 2021-9

[6]
Converting tabular data into images for deep learning with convolutional neural networks.

Sci Rep. 2021-5-31

[7]
Machine Learning for Early Lung Cancer Identification Using Routine Clinical and Laboratory Data.

Am J Respir Crit Care Med. 2021-8-15

[8]
Machine learning-based prognostic modeling using clinical data and quantitative radiomic features from chest CT images in COVID-19 patients.

Comput Biol Med. 2021-5

[9]
Recent Trends of Lung Cancer in Korea.

Tuberc Respir Dis (Seoul). 2021-4

[10]
External validation of prognostic models: what, why, how, when and where?

Clin Kidney J. 2020-11-24

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索