Li Xin, Ye Weibin, Xu Pan, Huang Haihong, Fan Jingmin, Yuan Ruming, Zheng Ming-Sen, Wang Ming-Sheng, Dong Quanfeng
State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China.
State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University, Xiamen, Fujian, 361005, China.
Adv Mater. 2022 Aug;34(31):e2202898. doi: 10.1002/adma.202202898. Epub 2022 Jul 5.
The properties of high theoretical capacity, low cost, and large potential of metallic sodium (Na) has strongly promoted the development of rechargeable sodium-based batteries. However, the issues of infinite volume variation, unstable solid electrolyte interphase (SEI), and dendritic sodium causes a rapid decline in performance and notorious safety hazards. Herein, a highly reversible encapsulation-based sodium storage by designing a functional hollow carbon nanotube with Zn single atom sites embedded in the carbon shell (Zn -HCNT) is achieved. The appropriate tube space can encapsulate bulk sodium inside; the inner enriched Zn sites provide abundant sodiophilic sites, which can evidently reduce the nucleation barrier of Na deposition. Moreover, the carbon shell derived from ZIF-8 provides geometric constraints and excellent ion/electron transport channels for the rapid transfer of Na due to its pore-rich shell, which can be revealed by in situ transmission electron microscopy (TEM). As expected, Na@Zn -HCNT anodes present steady long-term performance in symmetrical battery (>900 h at 10 mA cm ). Moreover, superior electrochemical performance of Na@Zn -HCNT||PB full cells can be delivered. This work develops a new strategy based on carbon nanotube encapsulation of metallic sodium, which improves the safety and cycling performance of sodium metal anode.
金属钠(Na)具有高理论容量、低成本和大电位等特性,有力地推动了可充电钠基电池的发展。然而,钠的无限体积变化、不稳定的固体电解质界面(SEI)和钠枝晶等问题导致电池性能迅速下降,并带来严重的安全隐患。在此,通过设计一种碳壳中嵌入锌单原子位点的功能性中空碳纳米管(Zn -HCNT),实现了一种基于封装的高度可逆钠存储。合适的管内空间可以将块状钠封装在内部;内部富集的锌位点提供了丰富的亲钠位点,能明显降低钠沉积的成核势垒。此外,由ZIF-8衍生的碳壳由于其富含孔隙的壳层,为钠的快速传输提供了几何约束和优异的离子/电子传输通道,这可以通过原位透射电子显微镜(TEM)观察到。正如预期的那样,Na@Zn -HCNT阳极在对称电池中表现出稳定的长期性能(在10 mA cm 下>900小时)。此外,Na@Zn -HCNT||PB全电池可展现出优异的电化学性能。这项工作基于金属钠的碳纳米管封装开发了一种新策略,提高了钠金属阳极的安全性和循环性能。