Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada.
Department of Computer Science, University of Toronto, 40 St. George Street, Toronto, ON M5S 2E4, Canada.
Sci Adv. 2023 Sep 29;9(39):eadg1894. doi: 10.1126/sciadv.adg1894.
Intratumoral heterogeneity can wreak havoc on current precision medicine strategies because of challenges in sufficient sampling of geographically separated areas of biodiversity distributed across centimeter-scale tumor distances. To address this gap, we developed a deep learning pipeline that leverages histomorphologic fingerprints of tissue to create "Histomic Atlases of Variation Of Cancers" (HAVOC). Using a number of objective molecular readouts, we demonstrate that HAVOC can define regional cancer boundaries with distinct biology. Using larger tumor specimens, we show that HAVOC can map biodiversity even across multiple tissue sections. By guiding profiling of 19 partitions across six high-grade gliomas, HAVOC revealed that distinct differentiation states can often coexist and be regionally distributed within these tumors. Last, to highlight generalizability, we benchmark HAVOC on additional tumor types. Together, we establish HAVOC as a versatile tool to generate small-scale maps of tissue heterogeneity and guide regional deployment of molecular resources to relevant biodiverse niches.
肿瘤内异质性会对当前的精准医疗策略造成严重破坏,因为在厘米级肿瘤距离上分布的具有地理隔离的生物多样性区域进行充分采样具有挑战性。为了解决这一差距,我们开发了一种深度学习管道,该管道利用组织的组织形态学指纹来创建“癌症变异的组织图谱”(HAVOC)。我们使用了许多客观的分子读数来证明 HAVOC 可以定义具有不同生物学特性的区域癌症边界。使用更大的肿瘤标本,我们表明 HAVOC 甚至可以跨多个组织切片绘制生物多样性图谱。通过指导六个高级别神经胶质瘤的 19 个分区的分析,HAVOC 表明,不同的分化状态通常可以共存,并在这些肿瘤中呈现区域性分布。最后,为了突出通用性,我们在其他肿瘤类型上对 HAVOC 进行了基准测试。总之,我们将 HAVOC 确立为一种通用工具,可以生成组织异质性的小规模图谱,并指导将分子资源部署到相关的生物多样性生态位。