Department of Information Technology, Uppsala University, Uppsala, Sweden.
Department of Oncology-Pathology, Karolinska Institutet, Solna, Sweden.
Cytometry A. 2021 Dec;99(12):1176-1186. doi: 10.1002/cyto.a.24467. Epub 2021 Jun 22.
Multiplexed and spatially resolved single-cell analyses that intend to study tissue heterogeneity and cell organization invariably face as a first step the challenge of cell classification. Accuracy and reproducibility are important for the downstream process of counting cells, quantifying cell-cell interactions, and extracting information on disease-specific localized cell niches. Novel staining techniques make it possible to visualize and quantify large numbers of cell-specific molecular markers in parallel. However, due to variations in sample handling and artifacts from staining and scanning, cells of the same type may present different marker profiles both within and across samples. We address multiplexed immunofluorescence data from tissue microarrays of low-grade gliomas and present a methodology using two different machine learning architectures and features insensitive to illumination to perform cell classification. The fully automated cell classification provides a measure of confidence for the decision and requires a comparably small annotated data set for training, which can be created using freely available tools. Using the proposed method, we reached an accuracy of 83.1% on cell classification without the need for standardization of samples. Using our confidence measure, cells with low-confidence classifications could be excluded, pushing the classification accuracy to 94.5%. Next, we used the cell classification results to search for cell niches with an unsupervised learning approach based on graph neural networks. We show that the approach can re-detect specialized tissue niches in previously published data, and that our proposed cell classification leads to niche definitions that may be relevant for sub-groups of glioma, if applied to larger data sets.
旨在研究组织异质性和细胞组织的多重和空间分辨单细胞分析通常首先面临细胞分类的挑战。准确性和可重复性对于细胞计数、量化细胞间相互作用以及提取与疾病相关的特定局部细胞龛信息的下游过程很重要。新型染色技术使得可以并行可视化和定量大量的细胞特异性分子标记物。然而,由于样本处理的变化以及染色和扫描产生的伪影,同一类型的细胞在样本内和样本间可能表现出不同的标记物特征。我们处理了低级别神经胶质瘤组织微阵列的多重免疫荧光数据,并提出了一种使用两种不同的机器学习架构和对光照不敏感的特征的方法来进行细胞分类。全自动细胞分类为决策提供了置信度度量,并且仅需要使用免费提供的工具创建的相对较小的带注释数据集进行训练。使用所提出的方法,我们在无需对样本进行标准化的情况下实现了 83.1%的细胞分类准确性。使用我们的置信度度量,可以排除分类置信度低的细胞,从而将分类准确性提高到 94.5%。接下来,我们使用细胞分类结果,通过基于图神经网络的无监督学习方法来搜索细胞龛。我们表明,该方法可以重新检测到先前发表的数据中具有特异性的组织龛,并且如果将其应用于更大的数据集,我们提出的细胞分类可以得到可能与神经胶质瘤亚组相关的龛定义。