Suppr超能文献

基于色氨酸的超高交联多孔聚合物的制备及评价及其作为一种高效吸附剂用于针管内固相萃取磺胺类药物

Preparation and evaluation of a tryptophan based hypercrosslinked porous polymer as an efficient adsorbent for pipette tip solid-phase extraction of sulfonamides.

机构信息

Henan University of Chinese Medicine, Zhengzhou 450046, China.

Henan University of Chinese Medicine, Zhengzhou 450046, China.

出版信息

Food Chem. 2024 Mar 1;435:137536. doi: 10.1016/j.foodchem.2023.137536. Epub 2023 Sep 28.

Abstract

A novel tryptophan-based porous polymer is designed and synthesized via a facile one-step hypercrosslinking polymerization process, and applied as sorbent for extraction of trace sulfonamides in foodstuffs. The developed polymer has high surface area, large conjugate system, and abundant functional groups (e.g., π-π stacking, hydrogen bonding, hydrophobic and electrostatic attraction interactions), which endow it with superior affinity and high adsorption capacity for sulfonamides (16.16-59.29 mg g). The optimized SPE method is coupled with HPLC-DAD to create a sensitive and efficient protocol that provides good linearity (R ≥ 0.9979), low limits of detection, satisfactory recoveries (92.5-109.5 %) and high precisions (RSDs < 8.24). In addition, the newly proposed method greatly reduces the amount of adsorbent (2.0 mg) and organic solvent (2.0 mL) used. Adsorption kinetics, isotherms, and simulation calculations studies further reveal the presence of monolayer adsorption, chemical adsorption process, and multiple interactions. Thus, this work presents a polymer capable of multiple interactions for the pretreatment of trace sulfonamides in foodstuffs.

摘要

一种新型的色氨酸基多孔聚合物通过简便的一步超交联聚合过程设计和合成,并用作食品中痕量磺胺类药物的提取吸附剂。所开发的聚合物具有高比表面积、大共轭体系和丰富的官能团(例如,π-π 堆积、氢键、疏水性和静电吸引相互作用),这使其对磺胺类药物具有优异的亲和力和高吸附容量(16.16-59.29 mg g)。优化的 SPE 方法与 HPLC-DAD 结合使用,创建了一种灵敏且高效的方案,该方案提供了良好的线性(R≥0.9979)、低检测限、令人满意的回收率(92.5-109.5%)和高精密度(RSDs<8.24%)。此外,新提出的方法大大减少了吸附剂(2.0 mg)和有机溶剂(2.0 mL)的用量。吸附动力学、等温线和模拟计算研究进一步表明存在单层吸附、化学吸附过程和多种相互作用。因此,这项工作提出了一种能够进行多种相互作用的聚合物,用于食品中痕量磺胺类药物的预处理。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验