Suppr超能文献

黑穗醋栗多糖稳定硒纳米颗粒的制备及其增强抗糖化和α-葡萄糖苷酶抑制活性的研究。

Preparation of Ribes nigrum L. polysaccharides-stabilized selenium nanoparticles for enhancement of the anti-glycation and α-glucosidase inhibitory activities.

机构信息

College of Art and Science, Northeast Agricultural University, Harbin 150030, People's Republic of China.

College of Life Science, Northeast Agricultural University, Harbin 150030, People's Republic of China.

出版信息

Int J Biol Macromol. 2023 Dec 31;253(Pt 5):127122. doi: 10.1016/j.ijbiomac.2023.127122. Epub 2023 Sep 28.

Abstract

Seven kinds of selenium nanoparticles (RP-SeNPs) were prepared by using the polysaccharides extracted from Ribes nigrum L. (RP) as the stabilizer and dispersant. Among them, RP-SeNPs-1 (94.2 nm), RP-SeNPs-2 (101.2 nm) and RP-SeNPs-3 (107.6 nm) with relatively smaller mean particle size exhibited stronger α-glucosidase inhibitory activity than other RP-SeNPs (115.3-164.2 nm) and SeNPs (288.9 nm). Ultraviolet-visible spectrophotometry, Fourier transform-infrared, X-ray diffraction, energy dispersive X-ray and X-ray photoelectron spectroscopy analyses confirmed that SeNPs were ligated with RP to form nanocomposites and displayed amorphous form. Electron microscopy images revealed that RP-SeNPs-1 - RP-SeNPs-3 were regular shape spherical nanocomposites with much better dispersion than SeNPs. Compared with SeNPs, RP-SeNPs displayed relatively high thermal, storage, pH and salt ion stability. Moreover, RP-SeNPs-1-RP-SeNPs-3 showed significantly better anti-glycation and α-glucosidase inhibitory activity than SeNPs, especially RP-SeNPs-1 with the smallest particle size. Inhibitory kinetics analysis indicated that SeNPs and RP-SeNPs inhibited α-glucosidase with competitive type and reversible mechanism. In addition, the conformation of the α-glucosidase was changed after binding with the SeNPs and RP-SeNPs-1. Fluorescence quenching and isothermal titration calorimetry assays revealed that these two nanoparticles could interact with α-glucosidase to form non-fluorescent complexes through hydrogen bonding, and the formation was spontaneously driven by enthalpy.

摘要

七种硒纳米粒子(RP-SeNPs)是通过使用从黑穗醋栗(RP)中提取的多糖作为稳定剂和分散剂制备的。其中,平均粒径较小的 RP-SeNPs-1(94.2nm)、RP-SeNPs-2(101.2nm)和 RP-SeNPs-3(107.6nm)比其他 RP-SeNPs(115.3-164.2nm)和 SeNPs(288.9nm)具有更强的α-葡萄糖苷酶抑制活性。紫外-可见分光光度法、傅里叶变换红外光谱、X 射线衍射、能量色散 X 射线和 X 射线光电子能谱分析证实,SeNPs 与 RP 结合形成纳米复合材料,并呈现非晶态。电子显微镜图像显示,RP-SeNPs-1-RP-SeNPs-3 是规则形状的球形纳米复合材料,分散性优于 SeNPs。与 SeNPs 相比,RP-SeNPs 显示出相对较高的热稳定性、储存稳定性、pH 值和盐离子稳定性。此外,RP-SeNPs-1-RP-SeNPs-3 显示出比 SeNPs 更好的抗糖化和α-葡萄糖苷酶抑制活性,尤其是粒径最小的 RP-SeNPs-1。抑制动力学分析表明,SeNPs 和 RP-SeNPs 以竞争性和可逆机制抑制α-葡萄糖苷酶。此外,α-葡萄糖苷酶的构象在与 SeNPs 和 RP-SeNPs-1 结合后发生了变化。荧光猝灭和等温滴定量热法测定表明,这两种纳米颗粒可以通过氢键与α-葡萄糖苷酶相互作用形成非荧光复合物,形成是由焓自发驱动的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验