College of Art and Science, Northeast Agricultural University, Harbin 150030, People's Republic of China.
College of Life Science, Northeast Agricultural University, Harbin 150030, People's Republic of China.
Int J Biol Macromol. 2023 Dec 31;253(Pt 5):127122. doi: 10.1016/j.ijbiomac.2023.127122. Epub 2023 Sep 28.
Seven kinds of selenium nanoparticles (RP-SeNPs) were prepared by using the polysaccharides extracted from Ribes nigrum L. (RP) as the stabilizer and dispersant. Among them, RP-SeNPs-1 (94.2 nm), RP-SeNPs-2 (101.2 nm) and RP-SeNPs-3 (107.6 nm) with relatively smaller mean particle size exhibited stronger α-glucosidase inhibitory activity than other RP-SeNPs (115.3-164.2 nm) and SeNPs (288.9 nm). Ultraviolet-visible spectrophotometry, Fourier transform-infrared, X-ray diffraction, energy dispersive X-ray and X-ray photoelectron spectroscopy analyses confirmed that SeNPs were ligated with RP to form nanocomposites and displayed amorphous form. Electron microscopy images revealed that RP-SeNPs-1 - RP-SeNPs-3 were regular shape spherical nanocomposites with much better dispersion than SeNPs. Compared with SeNPs, RP-SeNPs displayed relatively high thermal, storage, pH and salt ion stability. Moreover, RP-SeNPs-1-RP-SeNPs-3 showed significantly better anti-glycation and α-glucosidase inhibitory activity than SeNPs, especially RP-SeNPs-1 with the smallest particle size. Inhibitory kinetics analysis indicated that SeNPs and RP-SeNPs inhibited α-glucosidase with competitive type and reversible mechanism. In addition, the conformation of the α-glucosidase was changed after binding with the SeNPs and RP-SeNPs-1. Fluorescence quenching and isothermal titration calorimetry assays revealed that these two nanoparticles could interact with α-glucosidase to form non-fluorescent complexes through hydrogen bonding, and the formation was spontaneously driven by enthalpy.
七种硒纳米粒子(RP-SeNPs)是通过使用从黑穗醋栗(RP)中提取的多糖作为稳定剂和分散剂制备的。其中,平均粒径较小的 RP-SeNPs-1(94.2nm)、RP-SeNPs-2(101.2nm)和 RP-SeNPs-3(107.6nm)比其他 RP-SeNPs(115.3-164.2nm)和 SeNPs(288.9nm)具有更强的α-葡萄糖苷酶抑制活性。紫外-可见分光光度法、傅里叶变换红外光谱、X 射线衍射、能量色散 X 射线和 X 射线光电子能谱分析证实,SeNPs 与 RP 结合形成纳米复合材料,并呈现非晶态。电子显微镜图像显示,RP-SeNPs-1-RP-SeNPs-3 是规则形状的球形纳米复合材料,分散性优于 SeNPs。与 SeNPs 相比,RP-SeNPs 显示出相对较高的热稳定性、储存稳定性、pH 值和盐离子稳定性。此外,RP-SeNPs-1-RP-SeNPs-3 显示出比 SeNPs 更好的抗糖化和α-葡萄糖苷酶抑制活性,尤其是粒径最小的 RP-SeNPs-1。抑制动力学分析表明,SeNPs 和 RP-SeNPs 以竞争性和可逆机制抑制α-葡萄糖苷酶。此外,α-葡萄糖苷酶的构象在与 SeNPs 和 RP-SeNPs-1 结合后发生了变化。荧光猝灭和等温滴定量热法测定表明,这两种纳米颗粒可以通过氢键与α-葡萄糖苷酶相互作用形成非荧光复合物,形成是由焓自发驱动的。