Suppr超能文献

BiOI@BiS/MXene 异质结构的界面调控用于增强抗菌应用中的光热和光动力治疗。

Interfacial regulation of BiOI@BiS/MXene heterostructures for enhanced photothermal and photodynamic therapy in antibacterial applications.

机构信息

School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China.

School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China.

出版信息

Acta Biomater. 2023 Nov;171:506-518. doi: 10.1016/j.actbio.2023.09.036. Epub 2023 Sep 30.

Abstract

Developing environmentally friendly, broad-spectrum, and long-lasting antibacterial materials remains challenging. Our ternary BiOI@BiS/MXene composites, which exhibit both photothermal therapy (PTT) and photodynamic therapy (PDT) antibacterial properties, were synthesized through in-situ vulcanization of hollow flower-shaped BiOI on the surface of two-dimensional TiC MXene. The unique hollow flower-shaped BiOI structure with a high exposure of the (001) crystal plane amplifies light reflection and scattering, offering more active sites to improve light utilization. Under 808 nm irradiation, these composites achieved a photothermal conversion efficiency of 57.8 %, boosting the PTT antibacterial effect. The heterojunction between BiS and BiOI creates a built-in electric field at the interface, promoting hole and electron transfer. Significantly, the close-contact heterogeneous interface enhances charge transfer and suppresses electron-hole recombination, thereby boosting PDT bacteriostatic performance. EPR experiments confirmed that ∙O and •OH radicals play major roles in photocatalytic bacteriostatic reactions. The combined antibacterial action of PTT and PDT led to efficiencies of 99.7 % and 99.8 % against P. aeruginosa and S. aureus, respectively, under 808 nm laser irradiation. This innovative strategy and thoughtful design open new avenues for heterojunction materials in PTT and PDT sterilization. STATEMENT OF SIGNIFICANCE: Photodynamic and photothermal therapy is a promising antibacterial treatment, but its efficiency still limits its application. To overcome this limitation, we prepared three-dimensional heterogeneous BiOI@BiS/MXene nanocomposites through in-situ vulcanization of hollow flower-shaped BiOI with a high exposure of the (001) crystal plane onto the surface of two-dimensional MXene material. The resulting ternary material forms a close-contact heterogeneous interface, which improves charge transfer channels, reduces electron-hole pair recombination, and amplifies photodynamic bacteriostatic performance. These nanocomposites exhibit photothermal conversion efficiency of 57.8 %, enhancing their photothermal bactericidal effects. They demonstrated antibacterial efficiencies of 99.7 % against P. aeruginosa and 99.8 % against S. aureus. Therefore, this study provides a promising method for the synthesis of environmentally friendly and efficient antibacterial materials.

摘要

开发环保、广谱且长效的抗菌材料仍然具有挑战性。我们通过在二维 TiC MXene 表面原位硫化空心花状 BiOI 合成了三元 BiOI@BiS/MXene 复合材料,该复合材料具有光热治疗(PTT)和光动力治疗(PDT)抗菌性能。独特的空心花状 BiOI 结构具有高暴露的(001)晶面,可增强光反射和散射,提供更多的活性位点以提高光利用率。在 808nm 照射下,这些复合材料实现了 57.8%的光热转换效率,从而增强了 PTT 抗菌效果。BiS 和 BiOI 之间的异质结在界面处产生内置电场,促进空穴和电子转移。重要的是,紧密接触的异质界面增强了电荷转移并抑制了电子-空穴复合,从而提高了 PDT 抑菌性能。EPR 实验证实,•O 和 •OH 自由基在光催化抑菌反应中起主要作用。在 808nm 激光照射下,PTT 和 PDT 的联合抗菌作用使对铜绿假单胞菌和金黄色葡萄球菌的效率分别达到 99.7%和 99.8%。这种创新策略和深思熟虑的设计为 PTT 和 PDT 灭菌中的异质结材料开辟了新途径。

意义声明

光动力和光热疗法是一种很有前途的抗菌治疗方法,但它的效率仍然限制了它的应用。为了克服这一限制,我们通过在二维 MXene 材料表面原位硫化具有高暴露(001)晶面的空心花状 BiOI 制备了三维异质 BiOI@BiS/MXene 纳米复合材料。所得三元材料形成紧密接触的异质界面,改善了电荷转移通道,减少了电子-空穴对复合,并放大了光动力抑菌性能。这些纳米复合材料表现出 57.8%的光热转换效率,增强了其光热杀菌效果。它们对铜绿假单胞菌的杀菌效率达到 99.7%,对金黄色葡萄球菌的杀菌效率达到 99.8%。因此,本研究为合成环保高效抗菌材料提供了一种有前途的方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验