Suppr超能文献

死亡的气息。前沿技术与未来研究方向。

The smell of death. State-of-the-art and future research directions.

作者信息

Cieśla Julia, Skrobisz Julia, Niciński Bartosz, Kloc Magdalena, Mazur Katarzyna, Pałasz Artur, Javan Gulnaz T, Tomsia Marcin

机构信息

Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland.

Department of Histology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland.

出版信息

Front Microbiol. 2023 Sep 14;14:1260869. doi: 10.3389/fmicb.2023.1260869. eCollection 2023.

Abstract

The decomposition of a body is inseparably associated with the release of several types of odors. This phenomenon has been used in the training of sniffer dogs for decades. The odor profile associated with decomposition consists of a range of volatile organic compounds (VOCs), chemical composition of which varies over time, temperature, environmental conditions, and the type of microorganisms, and insects colonizing the carcass. Mercaptans are responsible for the bad smell associated with corpses; however, there are no unified recommendations for conducting forensic analysis based on the detectable odor of revealed corpses and previous research on VOCs shows differing results. The aim of this review is to systematize the current knowledge on the type of volatile organic compounds related to the decomposition process, depending on a few variables. This knowledge will improve the methods of VOCs detection and analysis to be used in modern forensic diagnostics and improve the methods of training dogs for forensic applications.

摘要

尸体的分解与多种气味的释放密切相关。几十年来,这一现象一直被用于训练嗅探犬。与分解相关的气味特征由一系列挥发性有机化合物(VOCs)组成,其化学成分会随时间、温度、环境条件以及在尸体上定殖的微生物和昆虫种类的不同而变化。硫醇是与尸体相关的难闻气味的来源;然而,基于已发现尸体的可检测气味进行法医分析,目前尚无统一的建议,而且此前关于挥发性有机化合物的研究结果也各不相同。本综述的目的是根据几个变量,将目前有关与分解过程相关的挥发性有机化合物类型的知识系统化。这些知识将改进用于现代法医诊断的挥发性有机化合物检测和分析方法,并改进用于法医应用的犬类训练方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bbf0/10538644/a62d333bcb8c/fmicb-14-1260869-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验