Razzaq Fuleah A, Calzada-Reyes Ana, Tang Qin, Guo Yanbo, Rabinowitz Arielle G, Bosch-Bayard Jorge, Galan-Garcia Lidice, Virues-Alba Trinidad, Suarez-Murias Carlos, Miranda Ileana, Riaz Usama, Bernardo Lagomasino Vivian, Bryce Cyralene, Anderson Simon G, Galler Janina R, Bringas-Vega Maria L, Valdes-Sosa Pedro A
The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformatics, University of Electronic Science and Technology of China, Chengdu, China.
Cuban Neuroscience Center, La Habana, Cuba.
Front Neurosci. 2023 Sep 15;17:1149102. doi: 10.3389/fnins.2023.1149102. eCollection 2023.
This study compares the complementary information from semi-quantitative EEG (sqEEG) and spectral quantitative EEG (spectral-qEEG) to detect the life-long effects of early childhood malnutrition on the brain.
Resting-state EEGs ( = 202) from the Barbados Nutrition Study (BNS) were used to examine the effects of protein-energy malnutrition (PEM) on childhood and middle adulthood outcomes. sqEEG analysis was performed on Grand Total EEG (GTE) protocol, and a single latent variable, the semi-quantitative Neurophysiological State (sqNPS) was extracted. A univariate linear mixed-effects (LME) model tested the dependence of sqNPS and nutritional group. sqEEG was compared with scores on the Montreal Cognitive Assessment (MoCA). Stable sparse classifiers (SSC) also measured the predictive power of sqEEG, spectral-qEEG, and a combination of both. Multivariate LME was applied to assess each EEG modality separately and combined under longitudinal settings.
The univariate LME showed highly significant differences between previously malnourished and control groups ( < 0.001); age ( = 0.01) was also significant, with no interaction between group and age detected. Childhood sqNPS ( = 0.02) and adulthood sqNPS ( = 0.003) predicted MoCA scores in adulthood. The SSC demonstrated that spectral-qEEG combined with sqEEG had the highest predictive power (mean AUC 0.92 ± 0.005). Finally, multivariate LME showed that the combined spectral-qEEG+sqEEG models had the highest log-likelihood (-479.7).
This research has extended our prior work with spectral-qEEG and the long-term impact of early childhood malnutrition on the brain. Our findings showed that sqNPS was significantly linked to accelerated cognitive aging at 45-51 years of age. While sqNPS and spectral-qEEG produced comparable results, our study indicated that combining sqNPS and spectral-qEEG yielded better performance than either method alone, suggesting that a multimodal approach could be advantageous for future investigations.
Based on our findings, a semi-quantitative approach utilizing GTE could be a valuable diagnostic tool for detecting the lasting impacts of childhood malnutrition. Notably, sqEEG has not been previously explored or reported as a biomarker for assessing the longitudinal effects of malnutrition. Furthermore, our observations suggest that sqEEG offers unique features and information not captured by spectral quantitative EEG analysis and could lead to its improvement.
本研究比较半定量脑电图(sqEEG)和频谱定量脑电图(频谱 - qEEG)的补充信息,以检测幼儿期营养不良对大脑的终生影响。
使用来自巴巴多斯营养研究(BNS)的静息态脑电图(n = 202)来检查蛋白质 - 能量营养不良(PEM)对儿童期和中年期结局的影响。对全脑总脑电图(GTE)协议进行sqEEG分析,并提取单个潜在变量,即半定量神经生理状态(sqNPS)。单变量线性混合效应(LME)模型测试了sqNPS与营养组的相关性。将sqEEG与蒙特利尔认知评估(MoCA)得分进行比较。稳定稀疏分类器(SSC)还测量了sqEEG、频谱 - qEEG以及两者组合的预测能力。应用多变量LME在纵向设置下分别评估每种脑电图模式及其组合。
单变量LME显示,既往营养不良组与对照组之间存在高度显著差异(p < 0.001);年龄(p = 0.01)也具有显著性,未检测到组与年龄之间的相互作用。儿童期sqNPS(p = 0.02)和成年期sqNPS(p = 0.003)可预测成年期的MoCA得分。SSC表明,频谱 - qEEG与sqEEG相结合具有最高的预测能力(平均AUC为0.92±0.005)。最后,多变量LME显示,频谱 - qEEG + sqEEG组合模型具有最高的对数似然值(-479.7)。
本研究扩展了我们之前关于频谱 - qEEG以及幼儿期营养不良对大脑长期影响的工作。我们的研究结果表明,sqNPS与45 - 51岁时认知加速老化显著相关。虽然sqNPS和频谱 - qEEG产生了可比的结果,但我们的研究表明,将sqNPS和频谱 - qEEG结合使用比单独使用任何一种方法都具有更好的性能,这表明多模态方法可能有利于未来的研究。
基于我们的研究结果,利用GTE的半定量方法可能是检测儿童期营养不良长期影响的有价值的诊断工具。值得注意的是,sqEEG此前尚未被探索或报道为评估营养不良纵向影响的生物标志物。此外,我们的观察结果表明,sqEEG提供了频谱定量脑电图分析未捕捉到的独特特征和信息,可能会改进该分析方法。