Suppr超能文献

协调多国 qEEG 标准(HarMNqEEG)。

Harmonized-Multinational qEEG norms (HarMNqEEG).

机构信息

The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.

The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China; Anhui Provincial Key Laboratory of Multimodal Cognitive Computation, Key Laboratory of Intelligent Computing & Signal Processing of Ministry of Education, School of Computer Science and Technology, Anhui University, Hefei 230601, China.

出版信息

Neuroimage. 2022 Aug 1;256:119190. doi: 10.1016/j.neuroimage.2022.119190. Epub 2022 Apr 7.

Abstract

This paper extends frequency domain quantitative electroencephalography (qEEG) methods pursuing higher sensitivity to detect Brain Developmental Disorders. Prior qEEG work lacked integration of cross-spectral information omitting important functional connectivity descriptors. Lack of geographical diversity precluded accounting for site-specific variance, increasing qEEG nuisance variance. We ameliorate these weaknesses. (i) Create lifespan Riemannian multinational qEEG norms for cross-spectral tensors. These norms result from the HarMNqEEG project fostered by the Global Brain Consortium. We calculate the norms with data from 9 countries, 12 devices, and 14 studies, including 1564 subjects. Instead of raw data, only anonymized metadata and EEG cross-spectral tensors were shared. After visual and automatic quality control, developmental equations for the mean and standard deviation of qEEG traditional and Riemannian DPs were calculated using additive mixed-effects models. We demonstrate qEEG "batch effects" and provide methods to calculate harmonized z-scores. (ii) We also show that harmonized Riemannian norms produce z-scores with increased diagnostic accuracy predicting brain dysfunction produced by malnutrition in the first year of life and detecting COVID induced brain dysfunction. (iii) We offer open code and data to calculate different individual z-scores from the HarMNqEEG dataset. These results contribute to developing bias-free, low-cost neuroimaging technologies applicable in various health settings.

摘要

本文扩展了频域定量脑电图(qEEG)方法,以提高对脑发育障碍的检测灵敏度。先前的 qEEG 工作缺乏对跨频谱信息的整合,忽略了重要的功能连接描述符。缺乏地域多样性使得无法考虑特定地点的差异,增加了 qEEG 的干扰方差。我们改善了这些弱点。(i) 为跨频谱张量创建生命全程黎曼多国 qEEG 规范。这些规范是由全球大脑联盟支持的 HarMNqEEG 项目创建的。我们使用来自 9 个国家、12 个设备和 14 项研究的数据计算规范,包括 1564 名受试者。我们只共享匿名化的元数据和 EEG 跨频谱张量,而不是原始数据。经过视觉和自动质量控制后,使用加性混合效应模型计算 qEEG 传统和黎曼 DP 的均值和标准差的发展方程。我们展示了 qEEG“批次效应”,并提供了计算协调 z 分数的方法。(ii) 我们还表明,协调的黎曼规范产生的 z 分数可以提高诊断准确性,预测生命第一年营养不良引起的大脑功能障碍,并检测 COVID 引起的大脑功能障碍。(iii) 我们提供了从 HarMNqEEG 数据集计算不同个体 z 分数的开放代码和数据。这些结果有助于开发无偏差、低成本的神经成像技术,适用于各种健康环境。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验