Goldberg Gregory W, Kogenaru Manjunatha, Keegan Sarah, Haase Max A B, Kagermazova Larisa, Arias Mauricio A, Onyebeke Kenenna, Adams Samantha, Beyer Daniel K, Fenyö David, Noyes Marcus B, Boeke Jef D
Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Langone Health, New York, NY 10016, USA.
Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA.
bioRxiv. 2024 Aug 18:2023.09.18.558319. doi: 10.1101/2023.09.18.558319.
DNA targeting Class 2 CRISPR-Cas effector nucleases, including the well-studied Cas9 proteins, evolved protospacer-adjacent motif (PAM) and guide RNA interactions that sequentially license their binding and cleavage activities at protospacer target sites. Both interactions are nucleic acid sequence specific but function constitutively; thus, they provide intrinsic spatial control over DNA targeting activities but naturally lack temporal control. Here we show that engineered Cas9 fusion proteins which bind to nascent RNAs near a protospacer can facilitate spatiotemporal coupling between transcription and DNA targeting at that protospacer: Transcription-associated Cas9 Targeting (TraCT). Engineered TraCT is enabled in eukaryotic yeast or human cells when suboptimal PAM interactions limit basal activity and when one or more nascent RNA substrates are still tethered to the actively transcribed target DNA in . Using yeast, we further show that this phenomenon can be applied for selective editing at one of two identical targets in distinct gene loci, or, in diploid allelic loci that are differentially transcribed. Our work demonstrates that temporal control over Cas9's targeting activity at specific DNA sites may be engineered without modifying Cas9's core domains and guide RNA components or their expression levels. More broadly, it establishes co-transcriptional RNA binding as a -acting mechanism that can conditionally stimulate CRISPR-Cas DNA targeting in eukaryotic cells.
靶向DNA的2类CRISPR-Cas效应核酸酶,包括研究充分的Cas9蛋白,进化出了原间隔相邻基序(PAM)和引导RNA相互作用,这些相互作用依次许可它们在原间隔靶位点的结合和切割活性。这两种相互作用都是核酸序列特异性的,但持续发挥作用;因此,它们对DNA靶向活性提供了内在的空间控制,但天然缺乏时间控制。在这里,我们展示了与原间隔附近的新生RNA结合的工程化Cas9融合蛋白可以促进转录和该原间隔处的DNA靶向之间的时空偶联:转录相关的Cas9靶向(TraCT)。当次优的PAM相互作用限制基础活性且一个或多个新生RNA底物仍与正在转录的靶DNA拴系在一起时,工程化的TraCT在真核酵母或人类细胞中得以实现。利用酵母,我们进一步表明,这种现象可应用于在不同基因位点的两个相同靶标之一进行选择性编辑,或在差异转录的二倍体等位基因位点进行选择性编辑。我们的工作表明,在不修改Cas9的核心结构域、引导RNA组件或其表达水平的情况下,可以对Cas9在特定DNA位点的靶向活性进行时间控制。更广泛地说,它确立了共转录RNA结合作为一种可在真核细胞中有条件地刺激CRISPR-Cas DNA靶向的作用机制。