Suppr超能文献

在地核条件下六方密排铁中的集体运动。

Collective motion in hcp-Fe at Earth's inner core conditions.

作者信息

Zhang Youjun, Wang Yong, Huang Yuqian, Wang Junjie, Liang Zhixin, Hao Long, Gao Zhipeng, Li Jun, Wu Qiang, Zhang Hong, Liu Yun, Sun Jian, Lin Jung-Fu

机构信息

Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China.

International Center for Planetary Science, College of Earth Sciences, Chengdu University of Technology, Chengdu 610059, China.

出版信息

Proc Natl Acad Sci U S A. 2023 Oct 10;120(41):e2309952120. doi: 10.1073/pnas.2309952120. Epub 2023 Oct 2.

Abstract

Earth's inner core is predominantly composed of solid iron (Fe) and displays intriguing properties such as strong shear softening and an ultrahigh Poisson's ratio. Insofar, physical mechanisms to explain these features coherently remain highly debated. Here, we have studied longitudinal and shear wave velocities of hcp-Fe (hexagonal close-packed iron) at relevant pressure-temperature conditions of the inner core using in situ shock experiments and machine learning molecular dynamics (MLMD) simulations. Our results demonstrate that the shear wave velocity of hcp-Fe along the Hugoniot in the premelting condition, defined as (: melting temperature of iron) above 0.96, is significantly reduced by ~30%, while Poisson's ratio jumps to approximately 0.44. MLMD simulations at 230 to 330 GPa indicate that collective motion with fast diffusive atomic migration occurs in premelting hcp-Fe primarily along [100] or [010] crystallographic direction, contributing to its elastic softening and enhanced Poisson's ratio. Our study reveals that hcp-Fe atoms can diffusively migrate to neighboring positions, forming open-loop and close-loop clusters in the inner core conditions. Hcp-Fe with collective motion at the inner core conditions is thus not an ideal solid previously believed. The premelting hcp-Fe with collective motion behaves like an extremely soft solid with an ultralow shear modulus and an ultrahigh Poisson's ratio that are consistent with seismic observations of the region. Our findings indicate that premelting hcp-Fe with fast diffusive motion represents the underlying physical mechanism to help explain the unique seismic and geodynamic features of the inner core.

摘要

地球的内核主要由固态铁(Fe)组成,并呈现出诸如强烈的剪切软化和超高泊松比等有趣特性。到目前为止,连贯解释这些特征的物理机制仍存在激烈争论。在此,我们利用原位冲击实验和机器学习分子动力学(MLMD)模拟,研究了在内核相关压力 - 温度条件下六方密排铁(hcp - Fe)的纵波和剪切波速度。我们的结果表明,在预熔化条件下(定义为高于0.96的铁的熔化温度),hcp - Fe沿雨贡纽曲线的剪切波速度显著降低约30%,而泊松比跃升至约0.44。在230至330吉帕压力下的MLMD模拟表明,预熔化的hcp - Fe中主要沿[100]或[010]晶体学方向发生具有快速扩散原子迁移的集体运动,这导致其弹性软化和泊松比增大。我们的研究表明,hcp - Fe原子可以扩散迁移到相邻位置,在内核条件下形成开环和闭环簇。因此,在内核条件下具有集体运动的hcp - Fe并非先前认为的理想固体。具有集体运动的预熔化hcp - Fe表现得像一种极其柔软的固体,具有超低剪切模量和超高泊松比,这与该区域的地震观测结果一致。我们的研究结果表明,具有快速扩散运动的预熔化hcp - Fe代表了有助于解释内核独特地震和地球动力学特征的潜在物理机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e69/10576103/d84d6cd06646/pnas.2309952120fig01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验