Suppr超能文献

新型基于深度学习的骨科 CT 成像金属伪影校正算法的临床前验证。

Preclinical validation of a novel deep learning-based metal artifact correction algorithm for orthopedic CT imaging.

机构信息

Department of Radiology, Xinjiang Production & Construction Corps Hospital, Urumqi, China.

United Imaging Healthcare, Shanghai, China.

出版信息

J Appl Clin Med Phys. 2023 Nov;24(11):e14166. doi: 10.1002/acm2.14166. Epub 2023 Oct 3.

Abstract

PURPOSE

To validate a novel deep learning-based metal artifact correction (MAC) algorithm for CT, namely, AI-MAC, in preclinical setting with comparison to conventional MAC and virtual monochromatic imaging (VMI) technique.

MATERIALS AND METHODS

An experimental phantom was designed by consecutively inserting two sets of pedicle screws (size Φ 6.5 × 30-mm and Φ 7.5 × 40-mm) into a vertebral specimen to simulate the clinical scenario of metal implantation. The resulting MAC, VMI, and AI-MAC images were compared with respect to the metal-free reference image by subjective scoring, as well as by CT attenuation, image noise, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and correction accuracy via adaptive segmentation of the paraspinal muscle and vertebral body.

RESULTS

The AI-MAC and VMI images showed significantly higher subjective scores than the MAC image (all p < 0.05). The SNRs and CNRs on the AI-MAC image were comparable to the reference (all p > 0.05), whereas those on the VMI were significantly lower (all p < 0.05). The paraspinal muscle segmented on the AI-MAC image was 4.6% and 5.1% more complete to the VMI and MAC images for the Φ 6.5 × 30-mm screws, and 5.0% and 5.1% for the Φ 7.5 × 40-mm screws, respectively. The vertebral body segmented on the VMI was closest to the reference, with only 3.2% and 7.4% overestimation for Φ 6.5 × 30-mm and Φ 7.5 × 40-mm screws, respectively.

CONCLUSIONS

Using metal-free reference as the ground truth for comparison, the AI-MAC outperforms VMI in characterizing soft tissue, while VMI is useful in skeletal depiction.

摘要

目的

在临床前环境中,通过与传统金属伪影校正(MAC)和虚拟单能量成像(VMI)技术进行比较,验证一种新的基于深度学习的 CT 金属伪影校正(MAC)算法,即 AI-MAC。

材料和方法

通过将两套椎弓根螺钉(大小为 Φ 6.5×30-mm 和 Φ 7.5×40-mm)连续插入椎骨标本中,模拟临床金属植入场景,设计了一个实验性的体模。比较了金属伪影校正、VMI 和 AI-MAC 图像与无金属参考图像的主观评分,以及通过自适应分割椎旁肌肉和椎体的 CT 衰减、图像噪声、信噪比(SNR)、对比噪声比(CNR)和校正精度。

结果

AI-MAC 和 VMI 图像的主观评分明显高于 MAC 图像(均 p<0.05)。AI-MAC 图像上的 SNR 和 CNR 与参考值相当(均 p>0.05),而 VMI 图像上的 SNR 和 CNR 明显较低(均 p<0.05)。对于 Φ 6.5×30-mm 螺钉,AI-MAC 图像上分割的椎旁肌肉分别比 VMI 和 MAC 图像完整 4.6%和 5.1%,对于 Φ 7.5×40-mm 螺钉,分别完整 5.0%和 5.1%。VMI 图像上分割的椎体与参考值最接近,对于 Φ 6.5×30-mm 和 Φ 7.5×40-mm 螺钉,分别有 3.2%和 7.4%的高估。

结论

使用无金属参考作为比较的基准,AI-MAC 在软组织特征化方面优于 VMI,而 VMI 在骨骼描绘方面有用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fb93/10647951/e11ae6d90a6c/ACM2-24-e14166-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验