Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 76100, Israel.
Department of Life Science Core Facilities, Weizmann Institute of Science, Rehovot 76100, Israel.
Plant Physiol. 2024 Jan 31;194(2):1059-1074. doi: 10.1093/plphys/kiad518.
Plants have evolved photosynthetic regulatory mechanisms to maintain homeostasis in response to light changes during diurnal transitions and those caused by passing clouds or by wind. One such adaptation directs photosynthetic electron flow to a cyclic pathway to alleviate excess energy surges. Here, we assign a function to regulatory cysteines of PGR5-like protein 1A (PGRL1A), a constituent of the PROTON GRADIENT REGULATION5 (PGR5)-dependent cyclic electron flow (CEF) pathway. During step increases from darkness to low light intensity in Arabidopsis (Arabidopsis thaliana), the intermolecular disulfide of the PGRL1A 59-kDa complex was reduced transiently within seconds to the 28-kDa form. In contrast, step increases from darkness to high light stimulated a stable, partially reduced redox state in PGRL1A. Mutations of 2 cysteines in PGRL1A, Cys82 and Cys183, resulted in a constitutively pseudo-reduced state. The mutant displayed higher proton motive force (PMF) and nonphotochemical quenching (NPQ) than the wild type (WT) and showed altered donor and acceptor dynamic flow around PSI. These changes were found to correspond with the redox state of PGRL1A. Continuous light regimes did not affect mutant growth compared to the WT. However, under fluctuating regimes of high light, the mutant showed better growth than the WT. In contrast, in fluctuating regimes of low light, the mutant displayed a growth penalty that can be attributed to constant stimulation of CEF under low light. Treatment with photosynthetic inhibitors indicated that PGRL1A redox state control depends on the penultimate Fd redox state. Our results showed that redox state changes in PGRL1A are crucial to optimize photosynthesis.
植物已经进化出光合作用调节机制,以维持内稳态,以响应白天过渡期间和被云或风引起的光变化。一种这样的适应是将光合电子流引导到循环途径,以减轻多余的能量激增。在这里,我们将 PGRL1A(PGR5 依赖性循环电子流(CEF)途径的组成部分)中的调节半胱氨酸的功能分配给 PGR5 样蛋白 1A(PGRL1A)。在拟南芥(Arabidopsis thaliana)从黑暗到低光强度的阶跃增加期间,PGRL1A 的 59 kDa 复合物的分子间二硫键在数秒内被还原为 28 kDa 形式。相比之下,从黑暗到高光的阶跃增加刺激 PGRL1A 中稳定的部分还原态。PGRL1A 中的 2 个半胱氨酸突变,Cys82 和 Cys183,导致持续的假性还原状态。与野生型(WT)相比,突变体表现出更高的质子动力势(PMF)和非光化学猝灭(NPQ),并且显示 PSI 周围供体和受体动态流动的改变。这些变化被发现与 PGRL1A 的氧化还原状态相对应。与 WT 相比,连续光照条件不会影响突变体的生长。然而,在高光波动条件下,突变体的生长情况优于 WT。相反,在低光波动条件下,突变体显示出生长劣势,这可以归因于在低光下 CEF 的持续刺激。用光合抑制剂处理表明,PGRL1A 氧化还原状态的控制取决于 Fd 的倒数氧化还原状态。我们的结果表明,PGRL1A 氧化还原状态的变化对于优化光合作用至关重要。