Tu Zegui, Yu Yang, Tian Tian, Li Caili, Luo Jieyan
Division of Thoracic Tumor Multimodality Treatment and Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China.
West China School of Medicine, Sichuan University, Chengdu, Sichuan, 610041, PR China.
Heliyon. 2023 Sep 27;9(10):e20465. doi: 10.1016/j.heliyon.2023.e20465. eCollection 2023 Oct.
Our study aimed to build a risk stratification system predicting the progression-free survival (PFS) to classify patients into diverse prognostic subgroups for advanced non-small-cell lung cancer patients treated with PD-(L)1 inhibitor.
404 patients from our center were enrolled in this study and 70% patients (n = 282) were randomly assigned into the training cohort and other 30% patients (n = 122) into the validation cohort. A testing cohort contained 81 patients from other centers were used to assess the generalizability of model. Cox regression analyses were used to identify the most significant clinical parameters. The model's performance was assessed by using concordance index (C-index), calibration curves, Decision Curve Analyses (DCAs), net reclassification improvement (NRI), integrated discrimination improvement (IDI) analyses, and survival curve.
Five clinical parameters were identified as the most significant predictors by using cox regression. We then integrated them into a Nomogram to Evaluate the relative PFS of ICIs Treatment (NEPIT). The C-index of NEPIT in the training cohort, the validation cohort and testing cohort was 0.789 (95%CI: 0.750-0.828), 0.745 (95%CI: 0.706-0.784), and 0.766 (95%CI: 0.744-0.788), respectively. The calibration curves presented a good congruence between the predictions and actual observations. The Decision Curve Analyses (DCAs) reflected positive net benefits can be obtained for NEPIT. The results from NRI and IDI analyses showed that the NEPIT could improve predictive power of TPS. In addition, the further constructed risk stratification system could effectively categorize patients into different risk subgroups.
The tools developed in this study would have value in guiding the optimal patient selection for precision care.
我们的研究旨在建立一个预测无进展生存期(PFS)的风险分层系统,以便将接受PD-(L)1抑制剂治疗的晚期非小细胞肺癌患者分类到不同的预后亚组中。
本研究纳入了来自我们中心的404例患者,其中70%(n = 282)的患者被随机分配到训练队列,另外30%(n = 122)的患者被分配到验证队列。一个测试队列包含来自其他中心的81例患者,用于评估模型的可推广性。采用Cox回归分析来确定最显著的临床参数。通过一致性指数(C指数)、校准曲线、决策曲线分析(DCA)、净重新分类改善(NRI)、综合鉴别改善(IDI)分析和生存曲线来评估模型的性能。
通过Cox回归确定了五个临床参数为最显著的预测因子。然后,我们将它们整合到一个诺模图中,以评估ICI治疗的相对PFS(NEPIT)。NEPIT在训练队列、验证队列和测试队列中的C指数分别为0.789(95%CI:0.750 - 0.828)、0.745(95%CI:0.706 - 0.784)和0.766(95%CI:0.744 - 0.788)。校准曲线显示预测值与实际观察值之间具有良好的一致性。决策曲线分析(DCA)表明NEPIT可以获得积极的净效益。NRI和IDI分析结果表明,NEPIT可以提高TPS的预测能力。此外,进一步构建的风险分层系统可以有效地将患者分类到不同的风险亚组中。
本研究开发的工具在指导精准医疗的最佳患者选择方面具有价值。