Department of Biological Sciences, Myongji University, Yongin, Gyeonggido, Republic of Korea.
Department of Life Science and Research Institute for Natural Sciences, Hanyang Universitygrid.49606.3d, Seoul, Republic of Korea.
Microbiol Spectr. 2022 Aug 31;10(4):e0173422. doi: 10.1128/spectrum.01734-22. Epub 2022 Jun 27.
Vancomycin and β-lactams are clinically important antibiotics that inhibit the formation of peptidoglycan cross-links, but their binding targets are different. The binding target of vancomycin is d-alanine-d-alanine (d-Ala-d-Ala), whereas that of β-lactam is penicillin-binding proteins (PBPs). In this study, we revealed the divergent effects of peptidoglycan (PG) carboxypeptidase DacA on vancomycin and β-lactam resistance in Escherichia coli and Bacillus subtilis. The deletion of DacA induced sensitivity to most β-lactams, whereas it induced strong resistance toward vancomycin. Notably, both phenotypes did not have a strong association with ld-transpeptidases, which are necessary for the formation of PG 3-3 cross-links and covalent bonds between PG and an Lpp outer membrane (OM) lipoprotein. Vancomycin resistance was induced by an increased amount of decoy d-Ala-d-Ala residues within PG, whereas β-lactam sensitivity was associated with physical interactions between DacA and PBPs. The presence of an OM permeability barrier strongly strengthened vancomycin resistance, but it significantly weakened β-lactam sensitivity. Collectively, our results revealed two distinct functions of DacA, which involved inverse modulation of bacterial resistance to clinically important antibiotics, β-lactams and vancomycin, and presented evidence for a link between DacA and PBPs. Bacterial PG hydrolases play important roles in various aspects of bacterial physiology, including cytokinesis, PG synthesis, quality control of PG, PG recycling, and stress adaptation. Of all the PG hydrolases, the role of PG carboxypeptidases is poorly understood, especially regarding their impacts on antibiotic resistance. We have revealed two distinct functions of PG carboxypeptidase DacA with respect to antibiotic resistance. The deletion of DacA led to sensitivity to most β-lactams, while it caused strong resistance to vancomycin. Our study provides novel insights into the roles of PG carboxypeptidases in the regulation of antibiotic resistance and a potential clue for the development of a drug to improve the clinical efficacy of β-lactam antibiotics.
万古霉素和β-内酰胺类抗生素是临床上重要的抗生素,它们抑制肽聚糖交联的形成,但它们的结合靶标不同。万古霉素的结合靶标是 D-丙氨酸-D-丙氨酸(d-Ala-d-Ala),而β-内酰胺类抗生素的结合靶标是青霉素结合蛋白(PBPs)。在这项研究中,我们揭示了肽聚糖(PG)羧肽酶 DacA 对大肠杆菌和枯草芽孢杆菌中万古霉素和β-内酰胺类抗生素耐药性的不同影响。DacA 的缺失诱导对大多数β-内酰胺类抗生素的敏感性,而诱导对万古霉素的强烈耐药性。值得注意的是,这两种表型与转肽酶(ld-transpeptidases)没有很强的关联,ld-transpeptidases 是 PG 3-3 交联和 PG 与 Lpp 外膜(OM)脂蛋白之间形成共价键所必需的。万古霉素耐药性是由 PG 中增加的虚假 d-Ala-d-Ala 残基诱导的,而β-内酰胺类抗生素敏感性与 DacA 和 PBPs 之间的物理相互作用有关。OM 通透性屏障的存在强烈增强了万古霉素的耐药性,但显著减弱了β-内酰胺类抗生素的敏感性。总之,我们的研究结果揭示了 DacA 的两种不同功能,涉及对临床重要抗生素(β-内酰胺类抗生素和万古霉素)的细菌耐药性的反向调节,并为 DacA 与 PBPs 之间的联系提供了证据。细菌 PG 水解酶在细菌生理学的各个方面都起着重要作用,包括细胞分裂、PG 合成、PG 质量控制、PG 回收和应激适应。在所有的 PG 水解酶中,PG 羧肽酶的作用知之甚少,尤其是其对抗生素耐药性的影响。我们揭示了 PG 羧肽酶 DacA 在抗生素耐药性方面的两种不同功能。DacA 的缺失导致对大多数β-内酰胺类抗生素的敏感性,而导致对万古霉素的强烈耐药性。我们的研究为 PG 羧肽酶在调节抗生素耐药性方面的作用提供了新的见解,并为开发一种提高β-内酰胺类抗生素临床疗效的药物提供了潜在线索。