Suppr超能文献

遗传算法优化的人工神经网络用于地中海嗜盐菌生物质和胞外多糖生产的多目标优化

Genetic algorithm-optimized artificial neural network for multi-objective optimization of biomass and exopolysaccharide production by Haloferax mediterranei.

作者信息

Al Rawahi Alaa M, Zafar Mohd, Khan Taqi Ahmed, Al Araimi Sara, Mahanty Biswanath, Behera Shishir Kumar

机构信息

Department of Applied Biotechnology, College of Applied Sciences and Pharmacy, University of Technology and Applied Sciences - Sur, Sur, Oman.

Division of Biotechnology, Karunya Institute of Technology and Sciences, Karunya Nagar, Coimbatore, Tamil Nadu, 641 114, India.

出版信息

Bioprocess Biosyst Eng. 2025 May;48(5):785-798. doi: 10.1007/s00449-025-03143-3. Epub 2025 Mar 22.

Abstract

Microbial production of industrially important exopolysaccharide (EPS) from extremophiles has several advantages. In this study, key media components (i.e., sucrose, yeast extract, and urea) were optimized for biomass growth and extracellular EPS production in Haloferax mediterranei DSM 1411 using Box-Behnken design. In a multi-objective optimization framework, response surface methodology (RSM) and genetic algorithm (GA)-optimized artificial neural network (ANN) were used to minimize biomass growth while increasing EPS production. The performance of the selected ANN model for the prediction of biomass and EPS (R: 0.964 and 0.975, respectively) was found to be better than that of the multiple regression model (R: 0.818, 0.963, respectively). The main effect of sucrose and its interaction with urea appears to have a significant effect on both responses. The ANN model projects an increase in EPS production from 4.49 to 18.2 g l while shifting the priority from biomass to biopolymer. The optimized condition predicted a maximum biomass and EPS production of 17.27 g l and 17.80 g l, respectively, at concentrations of sucrose (19.98 g l), yeast extract (1.97 g l), and urea (1.99 g l). Based on multi-objective optimization, the GA-ANN model predicted an increase in the EPS to biomass ratio for increasing the EPS and associated biomass production. The extracted EPS, identified as Gellan gum through NMR spectroscopy, was further characterized for surface and elemental composition using SEM-EDX analysis.

摘要

利用极端微生物通过微生物生产具有重要工业价值的胞外多糖(EPS)具有诸多优势。在本研究中,采用Box-Behnken设计对地中海嗜盐菌DSM 1411中生物质生长和胞外EPS生产的关键培养基成分(即蔗糖、酵母提取物和尿素)进行了优化。在多目标优化框架中,使用响应面方法(RSM)和遗传算法(GA)优化的人工神经网络(ANN)来在增加EPS产量的同时尽量减少生物质生长。结果发现,所选的用于预测生物质和EPS的ANN模型性能(R分别为0.964和0.975)优于多元回归模型(R分别为0.818和0.963)。蔗糖的主要影响及其与尿素的相互作用似乎对这两个响应均有显著影响。ANN模型预测EPS产量将从4.49克/升增加到18.2克/升,同时将优先级从生物质转移到生物聚合物。优化条件预测,在蔗糖(19.98克/升)、酵母提取物(1.97克/升)和尿素(1.99克/升)浓度下,最大生物质和EPS产量分别为17.27克/升和17.80克/升。基于多目标优化,GA-ANN模型预测随着EPS和相关生物质产量的增加,EPS与生物质的比例会提高。通过核磁共振光谱鉴定为结冷胶的提取EPS,使用扫描电子显微镜-能谱分析(SEM-EDX)进一步表征其表面和元素组成。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验