Suppr超能文献

让多学科临床用户参与设计人工智能驱动的 ICU 不稳定决策支持图形用户界面。

Engaging Multidisciplinary Clinical Users in the Design of an Artificial Intelligence-Powered Graphical User Interface for Intensive Care Unit Instability Decision Support.

机构信息

Department of Acute and Tertiary Care Nursing, University of Pittsburgh, Pittsburgh, Pennsylvania, United States.

Department of Behavioral and Community Health Sciences, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, United States.

出版信息

Appl Clin Inform. 2023 Aug;14(4):789-802. doi: 10.1055/s-0043-1775565. Epub 2023 Oct 4.

Abstract

BACKGROUND

Critical instability forecast and treatment can be optimized by artificial intelligence (AI)-enabled clinical decision support. It is important that the user-facing display of AI output facilitates clinical thinking and workflow for all disciplines involved in bedside care.

OBJECTIVES

Our objective is to engage multidisciplinary users (physicians, nurse practitioners, physician assistants) in the development of a graphical user interface (GUI) to present an AI-derived risk score.

METHODS

Intensive care unit (ICU) clinicians participated in focus groups seeking input on instability risk forecast presented in a prototype GUI. Two stratified rounds (three focus groups [only nurses, only providers, then combined]) were moderated by a focus group methodologist. After round 1, GUI design changes were made and presented in round 2. Focus groups were recorded, transcribed, and deidentified transcripts independently coded by three researchers. Codes were coalesced into emerging themes.

RESULTS

Twenty-three ICU clinicians participated (11 nurses, 12 medical providers [3 mid-level and 9 physicians]). Six themes emerged: (1) analytics transparency, (2) graphical interpretability, (3) impact on practice, (4) value of trend synthesis of dynamic patient data, (5) decisional weight (weighing AI output during decision-making), and (6) display location (usability, concerns for patient/family GUI view). Nurses emphasized having GUI objective information to support communication and optimal GUI location. While providers emphasized need for recommendation interpretability and concern for impairing trainee critical thinking. All disciplines valued synthesized views of vital signs, interventions, and risk trends but were skeptical of placing decisional weight on AI output until proven trustworthy.

CONCLUSION

Gaining input from all clinical users is important to consider when designing AI-derived GUIs. Results highlight that health care intelligent decisional support systems technologies need to be transparent on how they work, easy to read and interpret, cause little disruption to current workflow, as well as decisional support components need to be used as an adjunct to human decision-making.

摘要

背景

人工智能(AI)支持的临床决策支持可以优化关键不稳定预测和治疗。重要的是,面向用户的 AI 输出显示界面便于所有参与床边护理的学科进行临床思维和工作流程。

目的

我们的目标是让多学科用户(医生、护士从业者、医师助理)参与开发一个图形用户界面(GUI),以呈现 AI 衍生的风险评分。

方法

重症监护病房(ICU)临床医生参与了焦点小组,就原型 GUI 中呈现的不稳定风险预测提出意见。两轮分层(三个焦点小组[只有护士,只有提供者,然后是综合])由焦点小组方法学家主持。在第一轮之后,对 GUI 设计进行了更改,并在第二轮中进行了介绍。焦点小组的录音、转录,并由三名研究人员独立对转录进行编码。代码被合并为新兴主题。

结果

共有 23 名 ICU 临床医生参与(11 名护士,12 名医疗提供者[3 名中级和 9 名医生])。出现了六个主题:(1)分析透明度,(2)图形可解释性,(3)对实践的影响,(4)对动态患者数据趋势综合的价值,(5)决策权重(在决策过程中权衡 AI 输出),以及(6)显示位置(GUI 的可用性、对患者/家庭的关注)。护士强调 GUI 客观信息有助于支持沟通和 GUI 的最佳位置。而提供者则强调需要解释推荐内容,并担心会影响学员的批判性思维。所有学科都重视生命体征、干预措施和风险趋势的综合视图,但对将决策权重放在 AI 输出上持怀疑态度,直到证明值得信赖。

结论

在设计 AI 衍生的 GUI 时,考虑从所有临床用户那里获取意见是很重要的。结果表明,医疗保健智能决策支持系统技术需要在其工作方式上透明,易于阅读和解释,对当前工作流程的干扰较小,并且决策支持组件需要作为人类决策的辅助手段使用。

相似文献

2
Engaging clinicians early during the development of a graphical user display of an intelligent alerting system at the bedside.
Int J Med Inform. 2022 Mar;159:104643. doi: 10.1016/j.ijmedinf.2021.104643. Epub 2021 Nov 11.
3
End-user evaluation of an interface for clinical decision support using predictive algorithms.
Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:1149-1151. doi: 10.1109/EMBC48229.2022.9871939.
4
Improvements in Patient Monitoring in the Intensive Care Unit: Survey Study.
J Med Internet Res. 2020 Jun 19;22(6):e19091. doi: 10.2196/19091.

引用本文的文献

2
Perspectives of family medicine residents on artificial intelligence for survival estimation in patients with serious illness.
PLOS Digit Health. 2025 Jul 1;4(7):e0000917. doi: 10.1371/journal.pdig.0000917. eCollection 2025 Jul.
3
Searching for Value Sensitive Design in Applied Health AI: A Narrative Review.
Yearb Med Inform. 2024 Aug;33(1):75-82. doi: 10.1055/s-0044-1800723. Epub 2025 Apr 8.
4
Utilizing large language models for gastroenterology research: a conceptual framework.
Therap Adv Gastroenterol. 2025 Apr 1;18:17562848251328577. doi: 10.1177/17562848251328577. eCollection 2025.
6
Research agenda for antibiotic stewardship within the Veterans' Health Administration, 2024-2028.
Infect Control Hosp Epidemiol. 2024 Feb 2:1-7. doi: 10.1017/ice.2024.6.

本文引用的文献

2
Engaging clinicians early during the development of a graphical user display of an intelligent alerting system at the bedside.
Int J Med Inform. 2022 Mar;159:104643. doi: 10.1016/j.ijmedinf.2021.104643. Epub 2021 Nov 11.
3
Artificial Intelligence for Health Professions Educators.
NAM Perspect. 2021 Sep 8;2021. doi: 10.31478/202109a. eCollection 2021.
4
The role of machine learning applications in diagnosing and assessing critical and non-critical CHD: a scoping review.
Cardiol Young. 2021 Nov;31(11):1770-1780. doi: 10.1017/S1047951121004212. Epub 2021 Nov 2.
5
U.S. COVID-19 State Government Public Dashboards: An Expert Review.
Appl Clin Inform. 2021 Mar;12(2):208-221. doi: 10.1055/s-0041-1723989. Epub 2021 Apr 14.
7
Prediction of hypotension events with physiologic vital sign signatures in the intensive care unit.
Crit Care. 2020 Nov 25;24(1):661. doi: 10.1186/s13054-020-03379-3.
8
Graphical Presentations of Clinical Data in a Learning Electronic Medical Record.
Appl Clin Inform. 2020 Aug;11(4):680-691. doi: 10.1055/s-0040-1709707. Epub 2020 Oct 14.
9
Statewide Real-Time Tracking of Beds and Ventilators During Coronavirus Disease 2019 and Beyond.
Crit Care Explor. 2020 Jun 11;2(6):e0142. doi: 10.1097/CCE.0000000000000142. eCollection 2020 Jun.
10
What Do We Do After the Pilot Is Done? Implementation of a Hospital Early Warning System at Scale.
Jt Comm J Qual Patient Saf. 2020 Apr;46(4):207-216. doi: 10.1016/j.jcjq.2020.01.003. Epub 2020 Jan 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验