Suppr超能文献

机器学习应用在诊断和评估危急和非危急 CHD 中的作用:范围综述。

The role of machine learning applications in diagnosing and assessing critical and non-critical CHD: a scoping review.

机构信息

Department of Acute and Tertiary Care Nursing, University of Pittsburgh, Pittsburgh, PA, USA.

Division of Pediatric Critical Care Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA.

出版信息

Cardiol Young. 2021 Nov;31(11):1770-1780. doi: 10.1017/S1047951121004212. Epub 2021 Nov 2.

Abstract

Machine learning uses historical data to make predictions about new data. It has been frequently applied in healthcare to optimise diagnostic classification through discovery of hidden patterns in data that may not be obvious to clinicians. Congenital Heart Defect (CHD) machine learning research entails one of the most promising clinical applications, in which timely and accurate diagnosis is essential. The objective of this scoping review is to summarise the application and clinical utility of machine learning techniques used in paediatric cardiology research, specifically focusing on approaches aiming to optimise diagnosis and assessment of underlying CHD. Out of 50 full-text articles identified between 2015 and 2021, 40% focused on optimising the diagnosis and assessment of CHD. Deep learning and support vector machine were the most commonly used algorithms, accounting for an overall diagnostic accuracy > 0.80. Clinical applications primarily focused on the classification of auscultatory heart sounds, transthoracic echocardiograms, and cardiac MRIs. The range of these applications and directions of future research are discussed in this scoping review.

摘要

机器学习利用历史数据对新数据进行预测。它已被广泛应用于医疗保健领域,通过发现数据中的隐藏模式来优化诊断分类,这些模式可能对临床医生来说并不明显。先天性心脏病(CHD)的机器学习研究具有最有前途的临床应用之一,其中及时准确的诊断至关重要。本范围综述的目的是总结机器学习技术在儿科心脏病学研究中的应用和临床实用性,特别是侧重于旨在优化 CHD 诊断和评估的方法。在 2015 年至 2021 年间确定的 50 篇全文文章中,40%的文章侧重于优化 CHD 的诊断和评估。深度学习和支持向量机是最常用的算法,总体诊断准确性>0.80。临床应用主要集中在听诊心音、经胸超声心动图和心脏 MRI 的分类上。本文在范围综述中讨论了这些应用的范围和未来研究的方向。

相似文献

引用本文的文献

1
Role of Artificial Intelligence in Congenital Heart Disease and Interventions.人工智能在先天性心脏病及干预中的作用。
J Soc Cardiovasc Angiogr Interv. 2025 Mar 18;4(3Part B):102567. doi: 10.1016/j.jscai.2025.102567. eCollection 2025 Mar.

本文引用的文献

1
Artificial intelligence-assisted auscultation in detecting congenital heart disease.人工智能辅助听诊在先天性心脏病检测中的应用
Eur Heart J Digit Health. 2021 Jan 6;2(1):119-124. doi: 10.1093/ehjdh/ztaa017. eCollection 2021 Mar.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验