Suppr超能文献

一种基于增强现实的胸前心电图导联评估方法:一项可行性试验。

An augmented reality-based method to assess precordial electrocardiogram leads: a feasibility trial.

作者信息

Serfözö Peter Daniel, Sandkühler Robin, Blümke Bibiana, Matthisson Emil, Meier Jana, Odermatt Jolein, Badertscher Patrick, Sticherling Christian, Strebel Ivo, Cattin Philippe C, Eckstein Jens

机构信息

Department of Digitalisation and ICT, Chief Medical Information Officer (CMIO) Office, University Hospital Basel, Hebelstrasse 10, Basel 4031, Switzerland.

Department of Biomedical Engineering, Center for Medical Image Analysis and Navigation, University of Basel, Gewerbestrasse 14, Allschwil 4123, Switzerland.

出版信息

Eur Heart J Digit Health. 2023 Jul 27;4(5):420-427. doi: 10.1093/ehjdh/ztad046. eCollection 2023 Oct.

Abstract

AIMS

It has been demonstrated that several cardiac pathologies, including myocardial ischaemia, can be detected using smartwatch electrocardiograms (ECGs). Correct placement of bipolar chest leads remains a major challenge in the outpatient population.

METHODS AND RESULTS

In this feasibility trial, we propose an augmented reality-based smartphone app that guides the user to place the smartwatch in predefined positions on the chest using the front camera of a smartphone. A machine-learning model using MobileNet_v2 as the backbone was trained to detect the bipolar lead positions V1-V6 and visually project them onto the user's chest. Following the smartwatch recordings, a conventional 10 s, 12-lead ECG was recorded for comparison purposes. All 50 patients participating in the study were able to conduct a 9-lead smartwatch ECG using the app and assistance from the study team. Twelve patients were able to record all the limb and chest leads using the app without additional support. Bipolar chest leads recorded with smartwatch ECGs were assigned to standard unipolar Wilson leads by blinded cardiologists based on visual characteristics. In every lead, at least 86% of the ECGs were assigned correctly, indicating the remarkable similarity of the smartwatch to standard ECG recordings.

CONCLUSION

We have introduced an augmented reality-based method to independently record multichannel smartwatch ECGs in an outpatient setting.

摘要

目的

已有研究表明,包括心肌缺血在内的几种心脏疾病可通过智能手表心电图(ECG)检测出来。在门诊人群中,双极胸导联的正确放置仍然是一项重大挑战。

方法与结果

在这项可行性试验中,我们提出了一种基于增强现实的智能手机应用程序,该程序使用智能手机的前置摄像头引导用户将智能手表放置在胸部的预定义位置。训练了一个以MobileNet_v2为骨干的机器学习模型,以检测双极导联位置V1 - V6,并将其直观地投影到用户胸部。在进行智能手表记录后,为了进行比较,记录了一份常规的10秒12导联心电图。参与研究的所有50名患者都能够在研究团队的协助下使用该应用程序进行9导联智能手表心电图检查。12名患者能够在无需额外支持的情况下使用该应用程序记录所有肢体和胸导联。由不知情的心脏病专家根据视觉特征将智能手表心电图记录的双极胸导联指定为标准单极威尔逊导联。在每个导联中,至少86%的心电图被正确指定,这表明智能手表与标准心电图记录具有显著的相似性。

结论

我们引入了一种基于增强现实的方法,用于在门诊环境中独立记录多通道智能手表心电图。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d401/10545517/99b26ea03bd5/ztad046_ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验