Suppr超能文献

智能手表获取的多通道心电图用于 ST 段改变的诊断。

Multichannel Electrocardiograms Obtained by a Smartwatch for the Diagnosis of ST-Segment Changes.

机构信息

Division of Cardiology, Magna Graecia University, Catanzaro, Italy.

Center for Cardiovascular Research, Magna Graecia University, Catanzaro, Italy.

出版信息

JAMA Cardiol. 2020 Oct 1;5(10):1176-1180. doi: 10.1001/jamacardio.2020.3994.

Abstract

IMPORTANCE

Acute coronary syndromes are the leading cause of death worldwide and the leading cause of disease burden in high-income countries. Quick and accurate diagnosis of acute coronary syndromes is essential to avoid fatal events, for timely intervention, and to improve the prognosis.

OBJECTIVE

To prospectively investigate the feasibility and accuracy of a smartwatch in recording multiple electrocardiographic (ECG) leads and detecting ST-segment changes associated with acute coronary syndromes compared with a standard 12-lead ECG.

DESIGN, SETTING, AND PARTICIPANTS: A commercially available smartwatch was used in 100 participants to obtain multiple-channel ECGs. The study was conducted from April 19, 2019, to January 23, 2020. Fifty-four patients with ST elevation myocardial infarction, 27 patients with non-ST elevation myocardial infarction, and 19 healthy individuals were included in the study. The watch was placed in different body positions to obtain 9 bipolar ECG tracings (corresponding to Einthoven leads I, II, and III and precordial leads V1-V6) that were compared with a simultaneous standard 12-lead ECG.

MAIN OUTCOMES AND MEASURES

The concordance among the results of the smartwatch and standard ECG recordings was assessed using the Cohen κ coefficient and Bland-Altman analysis.

RESULTS

Of the 100 participants in the study, 67 were men (67%); mean (SD) age was 61 (16) years. Agreement was found between the smartwatch and standard ECG for the identification of a normal ECG (Cohen κ coefficient, 0.90; 95% CI, 0.78-1.00), ST-segment elevation changes (Cohen κ coefficient, 0.88; 95% CI, 0.78-0.97), and non-ST-segment elevation changes (Cohen κ coefficient, 0.85; 95% CI, 0.74-0.96). In addition, the Bland-Altman analysis demonstrated agreement between the smartwatch and standard ECG to detect the amplitude of ST-segment changes (bias, -0.003; SD, 0.18; lower limit, -0.36; and upper limit, 0.36). Use of the smartwatch ECG for the diagnosis of normal ECG showed a sensitivity of 84% (95% CI, 60%-97%) and specificity of 100% (95% CI, 95%-100%); for ST elevation, sensitivity was 93% (95% CI, 82%-99%) and specificity was 95% (95% CI, 85%-99%); and for NSTE ECG alterations, sensitivity was 94% (95% CI, 81%-99%) and specificity was 92% (95% CI, 83%-97%).

CONCLUSIONS AND RELEVANCE

The findings of this study suggest agreement between the multichannel smartwatch ECG and standard ECG for the identification of ST-segment changes in patients with acute coronary syndromes.

摘要

重要性

急性冠状动脉综合征是全球范围内导致死亡的主要原因,也是高收入国家疾病负担的主要原因。快速准确地诊断急性冠状动脉综合征对于避免致命事件、及时干预和改善预后至关重要。

目的

前瞻性研究智能手表在记录多个心电图(ECG)导联和检测与急性冠状动脉综合征相关的 ST 段变化方面的可行性和准确性,与标准 12 导联 ECG 相比。

设计、地点和参与者:使用市售的智能手表在 100 名参与者中获得多通道 ECG。该研究于 2019 年 4 月 19 日至 2020 年 1 月 23 日进行。研究纳入了 54 例 ST 段抬高型心肌梗死患者、27 例非 ST 段抬高型心肌梗死患者和 19 例健康个体。将手表放置在不同的身体位置,以获得 9 个双极心电图轨迹(对应于 Einthoven 导联 I、II 和 III 以及胸前导联 V1-V6),并与同时进行的标准 12 导联 ECG 进行比较。

主要结果和测量

使用 Cohen κ 系数和 Bland-Altman 分析评估智能手表和标准 ECG 记录结果之间的一致性。

结果

在这项研究的 100 名参与者中,有 67 名男性(67%);平均(SD)年龄为 61(16)岁。智能手表和标准 ECG 对正常心电图(Cohen κ 系数,0.90;95%CI,0.78-1.00)、ST 段抬高变化(Cohen κ 系数,0.88;95%CI,0.78-0.97)和非 ST 段抬高变化(Cohen κ 系数,0.85;95%CI,0.74-0.96)的识别结果具有一致性。此外,Bland-Altman 分析表明,智能手表和标准 ECG 在检测 ST 段变化幅度方面具有一致性(偏差,-0.003;SD,0.18;下限,-0.36;上限,0.36)。使用智能手表心电图诊断正常心电图的敏感性为 84%(95%CI,60%-97%),特异性为 100%(95%CI,95%-100%);ST 段抬高的敏感性为 93%(95%CI,82%-99%),特异性为 95%(95%CI,85%-99%);非 ST 段抬高心电图改变的敏感性为 94%(95%CI,81%-99%),特异性为 92%(95%CI,83%-97%)。

结论和相关性

这项研究的结果表明,智能手表多通道心电图与标准 ECG 在识别急性冠状动脉综合征患者的 ST 段变化方面具有一致性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/175b/7466842/e7ccba11e606/jamacardiol-e203994-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验