Suppr超能文献

基于影像组学的方法优化不明原因复发性流产患者子宫内膜容受性的评估。

Radiomics optimizing the evaluation of endometrial receptivity for women with unexplained recurrent pregnancy loss.

机构信息

Department of Ultrasound Imaging, The First People's Hospital of Wenling, Wenling, Zhejiang, China.

出版信息

Front Endocrinol (Lausanne). 2023 Aug 8;14:1181058. doi: 10.3389/fendo.2023.1181058. eCollection 2023.

Abstract

BACKGROUND

The optimization of endometrial receptivity (ER) through individualized therapies has been shown to enhance the likelihood of successful gestation. However, current practice lacks comprehensive methods for evaluating the ER of patients with recurrent pregnancy loss (RPL). Radiomics, an emerging AI-based technique that enables the extraction of mineable information from medical images, holds potential to offer a more objective and quantitative approach to ER assessment. This innovative tool may facilitate a deeper understanding of the endometrial environment and enable clinicians to optimize ER evaluation in RPL patients.

OBJECTIVE

This study aimed to identify ultrasound radiomics features associated with ER, with the purpose of predicting successful ongoing pregnancies in RPL patients, and to assess the predictive accuracy of these features against regular ER parameters.

METHODS

This retrospective, controlled study involved 262 patients with unexplained RPL and 273 controls with a history of uncomplicated full-term pregnancies. Radiomics features were extracted from ultrasound endometrial segmentation images to derive a radiomics score (rad-score) for each participant. Associations between rad-scores, baseline clinical variables, and sonographic data were evaluated using univariate and multivariate logistic regression analyses to identify potential indicators of RPL. Receiver operating characteristic (ROC) curve analysis was performed to evaluate the predictive accuracy of the rad-score and other identified indicators in discriminating RPL cases. Furthermore, the relationships between age and these identified indicators were assessed Pearson correlation analysis.

RESULTS

From the 1312 extracted radiomics features, five non-zero coefficient radiomics signatures were identified as significantly associated with RPL, forming the basis of the rad-score. Following multivariate logistic regression analysis, age, spiral artery pulsatility index (SA-PI), vascularisation index (VI), and rad-score emerged as independent correlates of RPL (all P<0.05). ROC curve analyses revealed the superior discriminative capability of the rad-score (AUC=0.882) over age (AUC=0.778), SA-PI (AUC=0.771), and VI (AUC=0.595). There were notable correlations between age and rad-score (r=0.275), VI (r=-0.224), and SA-PI (r=0.211), indicating age-related variations in RPL predictors.

CONCLUSION

This study revealed a significant association between unexplained RPL and elevated endometrial rad-scores during the WOI. Furthermore, it demonstrated the potential of rad-scores as a promising predictive tool for successful ongoing pregnancies in RPL patients.

摘要

背景

通过个体化治疗优化子宫内膜容受性(ER)已被证明可以提高成功妊娠的可能性。然而,目前的实践缺乏综合的方法来评估反复妊娠丢失(RPL)患者的 ER。放射组学是一种新兴的基于人工智能的技术,能够从医学图像中提取可挖掘的信息,为 ER 评估提供更客观和定量的方法。这种创新工具可能有助于更深入地了解子宫内膜环境,并使临床医生能够优化 RPL 患者的 ER 评估。

目的

本研究旨在确定与 ER 相关的超声放射组学特征,以预测 RPL 患者的持续妊娠成功,并评估这些特征对常规 ER 参数的预测准确性。

方法

这是一项回顾性、对照研究,共纳入 262 例不明原因 RPL 患者和 273 例无并发症足月妊娠史的对照者。从超声子宫内膜分割图像中提取放射组学特征,为每位参与者计算放射组学评分(rad-score)。使用单变量和多变量逻辑回归分析评估 rad-score 与基线临床变量和超声数据之间的关系,以确定 RPL 的潜在指标。通过接受者操作特征(ROC)曲线分析评估 rad-score 和其他确定指标在区分 RPL 病例中的预测准确性。此外,还通过 Pearson 相关分析评估了年龄与这些确定指标之间的关系。

结果

从提取的 1312 个放射组学特征中,确定了五个非零系数放射组学特征与 RPL 显著相关,构成了 rad-score 的基础。经过多变量逻辑回归分析,年龄、螺旋动脉搏动指数(SA-PI)、血管化指数(VI)和 rad-score 成为 RPL 的独立相关因素(均 P<0.05)。ROC 曲线分析显示,rad-score(AUC=0.882)的区分能力优于年龄(AUC=0.778)、SA-PI(AUC=0.771)和 VI(AUC=0.595)。年龄与 rad-score(r=0.275)、VI(r=-0.224)和 SA-PI(r=0.211)之间存在显著相关性,表明 RPL 预测因素与年龄有关。

结论

本研究表明,不明原因的 RPL 与 WOI 期间子宫内膜 rad-score 升高之间存在显著关联。此外,它还表明 rad-score 作为预测 RPL 患者持续妊娠成功的有前途的工具具有潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8996/10545880/114c7a001fa1/fendo-14-1181058-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验