Department of Ultrasound, Deyang People's Hospital, Deyang, Sichuan, China.
Department of Obstetrics and Gynecology, Deyang People's Hospital, Deyang, Sichuan, China.
Front Endocrinol (Lausanne). 2024 Aug 20;15:1380829. doi: 10.3389/fendo.2024.1380829. eCollection 2024.
Recurrent pregnancy loss (RPL) frequently links to a prolonged endometrial receptivity (ER) window, leading to the implantation of non-viable embryos. Existing ER assessment methods face challenges in reliability and invasiveness. Radiomics in medical imaging offers a non-invasive solution for ER analysis, but complex, non-linear radiomic-ER relationships in RPL require advanced analysis. Machine learning (ML) provides precision for interpreting these datasets, although research in integrating radiomics with ML for ER evaluation in RPL is limited.
To develop and validate an ML model that employs radiomic features derived from multimodal transvaginal ultrasound images, focusing on improving ER evaluation in RPL.
This retrospective, controlled study analyzed data from 346 unexplained RPL patients and 369 controls. The participants were divided into training and testing cohorts for model development and accuracy validation, respectively. Radiomic features derived from grayscale (GS) and shear wave elastography (SWE) images, obtained during the window of implantation, underwent a comprehensive five-step selection process. Five ML classifiers, each trained on either radiomic, clinical, or combined datasets, were trained for RPL risk stratification. The model demonstrating the highest performance in identifying RPL patients was selected for further validation using the testing cohort. The interpretability of this optimal model was augmented by applying Shapley additive explanations (SHAP) analysis.
Analysis of the training cohort (242 RPL, 258 controls) identified nine key radiomic features associated with RPL risk. The extreme gradient boosting (XGBoost) model, combining radiomic and clinical data, demonstrated superior discriminatory ability. This was evidenced by its area under the curve (AUC) score of 0.871, outperforming other ML classifiers. Validation in the testing cohort of 215 subjects (104 RPL, 111 controls) confirmed its accuracy (AUC: 0.844) and consistency. SHAP analysis identified four endometrial SWE features and two GS features, along with clinical variables like age, SAPI, and VI, as key determinants in RPL risk stratification.
Integrating ML with radiomics from multimodal endometrial ultrasound during the WOI effectively identifies RPL patients. The XGBoost model, merging radiomic and clinical data, offers a non-invasive, accurate method for RPL management, significantly enhancing diagnosis and treatment.
复发性妊娠丢失(RPL)常与子宫内膜容受性(ER)窗口延长有关,导致非存活胚胎的植入。现有的 ER 评估方法在可靠性和侵入性方面存在挑战。医学影像学中的放射组学为 ER 分析提供了一种非侵入性的解决方案,但 RPL 中复杂的、非线性的放射组学-ER 关系需要先进的分析。机器学习(ML)为解释这些数据集提供了精确性,尽管将放射组学与 ML 结合用于 RPL 中的 ER 评估的研究有限。
开发和验证一种使用多模态经阴道超声图像得出的放射组学特征的 ML 模型,重点在于改善 RPL 中的 ER 评估。
这是一项回顾性、对照研究,分析了 346 例不明原因 RPL 患者和 369 例对照者的数据。参与者被分为训练和测试队列,分别用于模型开发和准确性验证。在植入窗口期获取的灰度(GS)和剪切波弹性成像(SWE)图像中提取的放射组学特征经过了全面的五步选择过程。五种 ML 分类器分别针对放射组学、临床或综合数据集进行训练,用于 RPL 风险分层。在识别 RPL 患者方面表现最佳的模型被选择用于使用测试队列进行进一步验证。通过应用 Shapley 加性解释(SHAP)分析,增加了这个最佳模型的可解释性。
对训练队列(242 例 RPL,258 例对照者)的分析确定了与 RPL 风险相关的九个关键放射组学特征。极端梯度提升(XGBoost)模型结合放射组学和临床数据,表现出更好的区分能力。这一点从其 0.871 的曲线下面积(AUC)评分得到证实,优于其他 ML 分类器。在 215 名受试者(104 例 RPL,111 例对照者)的测试队列中进行验证,证实了其准确性(AUC:0.844)和一致性。SHAP 分析确定了四个子宫内膜 SWE 特征和两个 GS 特征,以及年龄、SAPI 和 VI 等临床变量,作为 RPL 风险分层的关键决定因素。
在 WOI 期间将 ML 与多模态子宫内膜超声的放射组学相结合,可有效识别 RPL 患者。XGBoost 模型融合放射组学和临床数据,为 RPL 管理提供了一种非侵入性、准确的方法,显著提高了诊断和治疗水平。