Suppr超能文献

使用深度学习增强超声和临床数据自动评估子宫内膜容受性以筛查复发性流产风险

Automated assessment of endometrial receptivity for screening recurrent pregnancy loss risk using deep learning-enhanced ultrasound and clinical data.

作者信息

Yan Shanling, Xiong Fei, Xin Yanfen, Zhou Zhuyu, Liu Wanqing

机构信息

Department of Ultrasound, Deyang People's Hospital, Deyang, Sichuan, China.

Department of Obstetrics and Gynecology, Deyang People's Hospital, Deyang, Sichuan, China.

出版信息

Front Physiol. 2024 Dec 24;15:1404418. doi: 10.3389/fphys.2024.1404418. eCollection 2024.

Abstract

BACKGROUND

Recurrent pregnancy loss (RPL) poses significant challenges in clinical management due to an unclear etiology in over half the cases. Traditional screening methods, including ultrasonographic evaluation of endometrial receptivity (ER), have been debated for their efficacy in identifying high-risk individuals. Despite the potential of artificial intelligence, notably deep learning (DL), to enhance medical imaging analysis, its application in ER assessment for RPL risk stratification remains underexplored.

OBJECTIVE

This study aims to leverage DL techniques in the analysis of routine clinical and ultrasound examination data to refine ER assessment within RPL management.

METHODS

Employing a retrospective, controlled design, this study included 346 individuals with unexplained RPL and 369 controls to assess ER. Participants were allocated into training (n = 485) and testing (n = 230) datasets for model construction and performance evaluation, respectively. DL techniques were applied to analyze conventional grayscale ultrasound images and clinical data, utilizing a pre-trained ResNet-50 model for imaging analysis and TabNet for tabular data interpretation. The model outputs were calibrated to generate probabilistic scores, representing the risk of RPL. Both comparative analyses and ablation studies were performed using ResNet-50, TabNet, and a combined fusion model. These were evaluated against other state-of-the-art DL and machine learning (ML) models, with the results validated against the testing dataset.

RESULTS

The comparative analysis demonstrated that the ResNet-50 model outperformed other DL architectures, achieving the highest accuracy and the lowest Brier score. Similarly, the TabNet model exceeded the performance of traditional ML models. Ablation studies demonstrated that the fusion model, which integrates both data modalities and is presented through a nomogram, provided the most accurate predictions, with an area under the curve of 0.853. The radiological DL model made a more significant contribution to the overall performance of the fusion model, underscoring its superior predictive capability.

CONCLUSION

This investigation demonstrates the superiority of a DL-enhanced fusion model that integrates routine ultrasound and clinical data for accurate stratification of RPL risk, offering significant advancements over traditional methods.

摘要

背景

复发性流产(RPL)在临床管理中带来了重大挑战,因为超过半数的病例病因不明。包括子宫内膜容受性(ER)超声评估在内的传统筛查方法,其在识别高危个体方面的有效性一直存在争议。尽管人工智能,尤其是深度学习(DL)有潜力增强医学影像分析,但其在RPL风险分层的ER评估中的应用仍未得到充分探索。

目的

本研究旨在利用DL技术分析常规临床和超声检查数据,以优化RPL管理中的ER评估。

方法

本研究采用回顾性对照设计,纳入346例不明原因RPL患者和369例对照者以评估ER。参与者分别被分配到训练(n = 485)和测试(n = 230)数据集,用于模型构建和性能评估。DL技术被应用于分析传统灰度超声图像和临床数据,使用预训练的ResNet - 50模型进行影像分析,使用TabNet进行表格数据解读。对模型输出进行校准以生成概率分数,代表RPL风险。使用ResNet - 50、TabNet和组合融合模型进行了比较分析和消融研究。将这些模型与其他先进的DL和机器学习(ML)模型进行评估,并根据测试数据集验证结果。

结果

比较分析表明,ResNet - 50模型优于其他DL架构,实现了最高的准确率和最低的Brier分数。同样,TabNet模型超过了传统ML模型的性能。消融研究表明,整合两种数据模式并通过列线图呈现的融合模型提供了最准确的预测,曲线下面积为0.853。放射学DL模型对融合模型的整体性能贡献更大,突出了其卓越的预测能力。

结论

本研究证明了DL增强融合模型的优越性,该模型整合常规超声和临床数据以准确分层RPL风险,相对于传统方法有显著进步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d47/11703864/b738180b8b7c/fphys-15-1404418-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验