IEEE Trans Neural Syst Rehabil Eng. 2023;31:3915-3926. doi: 10.1109/TNSRE.2023.3322275. Epub 2023 Oct 11.
Seizure prediction of epileptic preictal period through electroencephalogram (EEG) signals is important for clinical epilepsy diagnosis. However, recent deep learning-based methods commonly employ intra-subject training strategy and need sufficient data, which are laborious and time-consuming for a practical system and pose a great challenge for seizure predicting. Besides, multi-domain characterizations, including spatio-temporal-spectral dependencies in an epileptic brain are generally neglected or not considered simultaneously in current approaches, and this insufficiency commonly leads to suboptimal seizure prediction performance. To tackle the above issues, in this paper, we propose Contrastive Learning for Epileptic seizure Prediction (CLEP) using a Spatio-Temporal-Spectral Network (STS-Net). Specifically, the CLEP learns intrinsic epileptic EEG patterns across subjects by contrastive learning. The STS-Net extracts multi-scale temporal and spectral representations under different rhythms from raw EEG signals. Then, a novel triple attention layer (TAL) is employed to construct inter-dimensional interaction among multi-domain features. Moreover, a spatio dynamic graph convolution network (sdGCN) is proposed to dynamically model the spatial relationships between electrodes and aggregate spatial information. The proposed CLEP-STS-Net achieves a sensitivity of 96.7% and a false prediction rate of 0.072/h on the CHB-MIT scalp EEG database. We also validate the proposed method on clinical intracranial EEG (iEEG) database from our Xuanwu Hospital of Capital Medical University, and the predicting system yielded a sensitivity of 95%, a false prediction rate of 0.087/h. The experimental results outperform the state-of-the-art studies which validate the efficacy of our method. Our code is available at https://github.com/LianghuiGuo/CLEP-STS-Net.
通过脑电图(EEG)信号对癫痫发作前期进行癫痫发作预测对于临床癫痫诊断很重要。然而,最近基于深度学习的方法通常采用基于单个体内的训练策略,需要大量的数据,这对于实际系统来说既费力又耗时,对发作预测构成了巨大挑战。此外,当前的方法通常忽略或没有同时考虑多域特征,包括癫痫大脑中的时空谱依赖性,这通常会导致发作预测性能不佳。为了解决上述问题,本文提出了一种基于对比学习的癫痫发作预测方法(CLEP),使用了时空谱网络(STS-Net)。具体来说,CLEP 通过对比学习学习跨主体的内在癫痫 EEG 模式。STS-Net 从原始 EEG 信号中提取不同节律下的多尺度时频表示。然后,采用一种新的三重注意力层(TAL)来构建多域特征之间的跨维相互作用。此外,提出了一种时空动态图卷积网络(sdGCN)来动态建模电极之间的空间关系并聚合空间信息。所提出的 CLEP-STS-Net 在 CHB-MIT 头皮 EEG 数据库上实现了 96.7%的灵敏度和 0.072/h 的假阳性预测率。我们还在首都医科大学宣武医院的临床颅内 EEG(iEEG)数据库上验证了所提出的方法,预测系统的灵敏度为 95%,假阳性预测率为 0.087/h。实验结果优于最先进的研究,验证了我们方法的有效性。我们的代码可在 https://github.com/LianghuiGuo/CLEP-STS-Net 上获得。