Suppr超能文献

基于脑电功能连接的癫痫发作预测可解释统计方法

An Explainable Statistical Method for Seizure Prediction Using Brain Functional Connectivity from EEG.

机构信息

Beijing International Center for Mathematical Research, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, China.

Department of Pediatrics and Pediatric Epilepsy Center, Peking University First Hospital, No. 1 Xi'an Men Street, West District, Beijing 100034, China.

出版信息

Comput Intell Neurosci. 2022 Dec 8;2022:2183562. doi: 10.1155/2022/2183562. eCollection 2022.

Abstract

BACKGROUND

Epilepsy is a group of chronic neurological disorders characterized by recurrent and abrupt seizures. The accurate prediction of seizures can reduce the burdens of this disorder. Now, existing studies use brain network features to classify patients' preictal or interictal states, enabling seizure prediction. However, most predicting methods are based on deep learning techniques, which have weak interpretability and high computational complexity. To address these issues, in this study, we proposed a novel two-stage statistical method that is interpretable and easy to compute.

METHODS

We used two datasets to evaluate the performance of the proposed method, including the well-known public dataset CHB-MIT. In the first stage, we estimated the dynamic brain functional connectivity network for each epoch. Then, in the second stage, we used the derived network predictor for seizure prediction.

RESULTS

We illustrated the results of our method in seizure prediction in two datasets separately. For the FH-PKU dataset, our approach achieved an AUC value of 0.963, a prediction sensitivity of 93.1%, and a false discovery rate of 7.7%. For the CHB-MIT dataset, our approach achieved an AUC value of 0.940, a prediction sensitivity of 93.0%, and a false discovery rate of 11.1%, outperforming existing state-of-the-art methods. . This study proposed an explainable statistical method, which can estimate the brain network using the scalp EEG method and use the net-work predictor to predict epileptic seizures. . R Source code is available at https://github.com/HaoChen1994/Seizure-Prediction.

摘要

背景

癫痫是一组以反复和突然发作为特征的慢性神经系统疾病。准确预测癫痫发作可以减轻这种疾病的负担。现在,现有的研究使用脑网络特征来对患者的癫痫发作前或发作间期状态进行分类,从而实现癫痫预测。然而,大多数预测方法基于深度学习技术,这些技术的可解释性较弱,计算复杂度较高。为了解决这些问题,本研究提出了一种新颖的、可解释且易于计算的两阶段统计方法。

方法

我们使用了两个数据集来评估所提出方法的性能,包括著名的公共数据集 CHB-MIT。在第一阶段,我们为每个时间段估计动态脑功能连通性网络。然后,在第二阶段,我们使用得出的网络预测器进行癫痫发作预测。

结果

我们分别在两个数据集上展示了我们方法在癫痫发作预测中的结果。对于 FH-PKU 数据集,我们的方法达到了 AUC 值 0.963、预测敏感度 93.1%和假阳性率 7.7%。对于 CHB-MIT 数据集,我们的方法达到了 AUC 值 0.940、预测敏感度 93.0%和假阳性率 11.1%,优于现有的最先进方法。这项研究提出了一种可解释的统计方法,可以使用头皮 EEG 方法来估计脑网络,并使用网络预测器来预测癫痫发作。R 源代码可在 https://github.com/HaoChen1994/Seizure-Prediction 上获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8bb5/9754847/d0bc41939d91/CIN2022-2183562.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验