School of Cyber Security, University of Chinese Academy of Sciences, Zhongguancun Nanyitiao, Beijing, 100190, China; Institute of Information Engineering, Chinese Academy of Sciences, Shangdi Street, Shucun Road, 19, Beijing, 100080, China.
Institute of Information Engineering, Chinese Academy of Sciences, Shangdi Street, Shucun Road, 19, Beijing, 100080, China.
Neural Netw. 2023 Nov;168:339-349. doi: 10.1016/j.neunet.2023.09.021. Epub 2023 Sep 19.
Graph data augmentations have demonstrated remarkable performance on homophilic graph neural networks (GNNs). Nevertheless, when transferred to a heterophilic graph, these augmentations are less effective for GNN models and lead to reduced performance. To address this issue, we propose a unified augmentation approach called GePHo, a regularization technique for heterophilic graph neural networks based on self-supervised learning, leveraging graph data augmentation to acquire extra information to guide model learning. Specifically, we propose to generate a pseudo-homophily graph that is type-agnostic, enabling us to apply GePHo to both homophilic and heterophilic graphs. Then, we regularize the neighbors with a sharpening technique for data augmentation and generate the auxiliary pseudo-labels to classify the original GNN's output, whose operations are to constrain the local and global node representation, respectively. Extensive experiments on three homophilic graph and six heterophilic graph datasets demonstrate the competitive effectiveness of GePHo in node classification task, and the ablation experiments verify the efficacy of our GePHo in graph data augmentation.
图数据增强在同配图神经网络(GNN)上表现出了显著的性能。然而,当这些增强被转移到异配图时,它们对 GNN 模型的效果较差,导致性能下降。针对这个问题,我们提出了一种名为 GePHo 的统一增强方法,这是一种基于自监督学习的异配图神经网络正则化技术,利用图数据增强来获取额外的信息来指导模型学习。具体来说,我们提出生成一种与类型无关的伪同配图,使我们能够将 GePHo 应用于同配图和异配图。然后,我们使用锐化技术对邻居进行正则化,以进行数据增强,并生成辅助伪标签来对原始 GNN 的输出进行分类,其操作分别是约束局部和全局节点表示。在三个同配图和六个异配图数据集上的广泛实验表明,GePHo 在节点分类任务中具有竞争力,消融实验验证了我们的 GePHo 在图数据增强中的有效性。