Suppr超能文献

CurvAGN:基于曲率的自适应图神经网络用于预测蛋白质-配体结合亲和力。

CurvAGN: Curvature-based Adaptive Graph Neural Networks for Predicting Protein-Ligand Binding Affinity.

机构信息

Research Center for Graph Computing, Zhejiang Lab, Yuhang, Hangzhou, 311121, Zhejiang, China.

Department of Computer Science and Engineering, Hong Kong University of Science and Technology, Jiulongwan, Hongkong, 999077, China.

出版信息

BMC Bioinformatics. 2023 Oct 5;24(1):378. doi: 10.1186/s12859-023-05503-w.

Abstract

Accurately predicting the binding affinity between proteins and ligands is crucial for drug discovery. Recent advances in graph neural networks (GNNs) have made significant progress in learning representations of protein-ligand complexes to estimate binding affinities. To improve the performance of GNNs, there frequently needs to look into protein-ligand complexes from geometric perspectives. While the "off-the-shelf" GNNs could incorporate some basic geometric structures of molecules, such as distances and angles, through modeling the complexes as homophilic graphs, these solutions seldom take into account the higher-level geometric attributes like curvatures and homology, and also heterophilic interactions.To address these limitations, we introduce the Curvature-based Adaptive Graph Neural Network (CurvAGN). This GNN comprises two components: a curvature block and an adaptive attention guided neural block (AGN). The curvature block encodes multiscale curvature informaton, then the AGN, based on an adaptive graph attention mechanism, incorporates geometry structure including angle, distance, and multiscale curvature, long-range molecular interactions, and heterophily of the graph into the protein-ligand complex representation. We demonstrate the superiority of our proposed model through experiments conducted on the PDBbind-V2016 core dataset.

摘要

准确预测蛋白质和配体之间的结合亲和力对于药物发现至关重要。图神经网络(GNN)的最新进展在学习蛋白质-配体复合物的表示以估计结合亲和力方面取得了重大进展。为了提高 GNN 的性能,通常需要从几何角度研究蛋白质-配体复合物。虽然“现成的”GNN 可以通过将复合物建模为同配图来整合分子的一些基本几何结构,如距离和角度,但这些解决方案很少考虑曲率和同源性等更高层次的几何属性,以及异配相互作用。为了解决这些限制,我们引入了基于曲率的自适应图神经网络(CurvAGN)。这个 GNN 由两个组件组成:一个曲率块和一个自适应注意引导神经块(AGN)。曲率块编码多尺度曲率信息,然后 AGN 通过自适应图注意力机制,将包括角度、距离、多尺度曲率、远程分子相互作用和图的异配性在内的几何结构整合到蛋白质-配体复合物的表示中。我们通过在 PDBbind-V2016 核心数据集上进行的实验证明了我们提出的模型的优越性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1071/10557336/16e4c8bbebbb/12859_2023_5503_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验