Suppr超能文献

用于脑年龄估计的脑网络符号曲率图表示学习

Signed Curvature Graph Representation Learning of Brain Networks for Brain Age Estimation.

作者信息

Li Jingming, Lyu Zhengyuan, Yu Hu, Fu Si, Li Ke, Yao Li, Guo Xiaojuan

出版信息

IEEE J Biomed Health Inform. 2024 Dec;28(12):7491-7502. doi: 10.1109/JBHI.2024.3434473. Epub 2024 Dec 5.

Abstract

Graph Neural Networks (GNNs) play a pivotal role in learning representations of brain networks for estimating brain age. However, the over-squashing impedes interactions between long-range nodes, hindering the ability of message-passing mechanism-based GNNs to learn the topological structure of brain networks. Graph rewiring methods and curvature GNNs have been proposed to alleviate over-squashing. However, most graph rewiring methods overlook node features and curvature GNNs neglect the geometric properties of signed curvature. In this study, a Signed Curvature GNN (SCGNN) was proposed to rewire the graph based on node features and curvature, and learn the representation of signed curvature. First, a Mutual Information Ollivier-Ricci Flow (MORF) was proposed to add connections in the neighborhood of edge with the minimal negative curvature based on the maximum mutual information between node features, improving the efficiency of information interaction between nodes. Then, a Signed Curvature Convolution (SCC) was proposed to aggregate node features based on positive and negative curvature, facilitating the model's ability to capture the complex topological structures of brain networks. Additionally, an Ollivier-Ricci Gradient Pooling (ORG-Pooling) was proposed to select the key nodes and topology structures by curvature gradient and attention mechanism, accurately obtaining the global representation for brain age estimation. Experiments conducted on six public datasets with structural magnetic resonance imaging (sMRI), spanning ages from 18 to 91 years, validate that our method achieves promising performance compared with existing methods. Furthermore, we employed the gaps between brain age and chronological age for identifying Alzheimer's Disease (AD), yielding the best classification performance.

摘要

图神经网络(GNNs)在学习脑网络表示以估计脑年龄方面发挥着关键作用。然而,过度挤压阻碍了远程节点之间的交互,妨碍了基于消息传递机制的GNN学习脑网络拓扑结构的能力。已提出图重布线方法和曲率GNN来缓解过度挤压。然而,大多数图重布线方法忽略了节点特征,而曲率GNN则忽略了符号曲率的几何特性。在本研究中,提出了一种符号曲率GNN(SCGNN),基于节点特征和曲率对图进行重布线,并学习符号曲率的表示。首先,提出了一种互信息奥利维耶 - 里奇流(MORF),基于节点特征之间的最大互信息,在具有最小负曲率的边的邻域中添加连接,提高节点之间信息交互的效率。然后,提出了一种符号曲率卷积(SCC),基于正曲率和负曲率聚合节点特征,促进模型捕捉脑网络复杂拓扑结构的能力。此外,还提出了一种奥利维耶 - 里奇梯度池化(ORG - Pooling),通过曲率梯度和注意力机制选择关键节点和拓扑结构,准确获得用于脑年龄估计的全局表示。在六个使用结构磁共振成像(sMRI)的公共数据集上进行的实验,涵盖了18至91岁的年龄范围,验证了我们的方法与现有方法相比取得了有前景的性能。此外,我们利用脑年龄和实际年龄之间的差距来识别阿尔茨海默病(AD),获得了最佳的分类性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验