Suppr超能文献

2005-2021 年印度城市育龄期女性超重/肥胖的时空变化及其决定因素。

Spatiotemporal variations and determinants of overweight/obesity among women of reproductive age in urban India during 2005-2021.

机构信息

Department of Geography, Banaras Hindu University, Varanasi, Uttar Pradesh, India.

Girl Innovation, Research, and Learning (GIRL) Center, Population Council, New York, USA.

出版信息

BMC Public Health. 2023 Oct 5;23(1):1933. doi: 10.1186/s12889-023-16842-x.

Abstract

BACKGROUND

India has witnessed rapid urbanization in recent decades, leading to a worrisome surge in non-communicable diseases, particularly overweight/obesity, which now present a critical public health concern. Therefore, this study seeks to examine spatiotemporal variations and determinants of overweight/obesity among women of reproductive age (WRA) in urban India and its states during 2005-2021.

METHODS

The study used 44,882, 171,443, and 135,272 WRA aged 15-49 from National Family Health Survey (NFHS)-3 (2005-06), NFHS-4 (2015-16), and NFHS-5 (2019-21), respectively. The outcome variable was overweight/obesity, defined as a Body Mass Index (BMI) of ≥ 25 kg/m. Chi-squared test and multivariable logistic regression were used to identify the determinants of overweight/obesity.

RESULTS

Overweight/obesity prevalence among WRA in urban India has risen significantly, from 23% in 2005-06 to 33% in 2019-21. This increase is particularly pronounced among SC/ST women and women with lower educational levels. During the study period, overweight/obesity rates in different states exhibited varying increases, ranging from 3 percentage points (pp) in Rajasthan to 22 pp in Odisha. Certain southern (e.g., Tamil Nadu and Andhra Pradesh) and northeastern states saw a significant 15 pp or more increase. In contrast, several northern, central, and eastern states (e.g., Punjab, Haryana, Rajasthan, Madhya Pradesh, Chhattisgarh, Jharkhand, West Bengal) experienced relatively smaller increases ranging from 5 to 8 pp. As of 2019-21, two regions exhibited high prevalence rates of overweight/obesity, exceeding 35%: the southern region (Tamil Nadu, Andhra Pradesh, Kerala, and Karnataka) and the northern region (Punjab, Himachal Pradesh, Uttarakhand, and Haryana). In contrast, the Empowered Action Group states had relatively lower rates (25% or less) of overweight/obesity. Regression results showed that older women [AOR: 5.98, 95% CI: 5.71-6.27], those from the richest quintile [AOR: 4.23, 95% CI: 3.95-4.54], those living in south India [AOR: 1.77, 95% CI: 1.72-1.82], and those having diabetes [AOR: 1.92, 95% CI: 1.83-2.02] were more likely to be overweight/obese.

CONCLUSION

Considering the significant increase in overweight/obesity among urban WRA in India, along with substantial disparities across states and socioeconomic groups, it is imperative for the government to formulate state-specific strategies and policies based on determinants to effectively combat overweight/obesity.

摘要

背景

近几十年来,印度经历了快速的城市化进程,导致非传染性疾病(尤其是超重/肥胖)令人担忧地激增,这对公众健康构成了重大威胁。因此,本研究旨在探讨印度城市地区育龄妇女(WRA)超重/肥胖的时空变化及其决定因素,研究时间为 2005-2021 年。

方法

本研究使用了来自国家家庭健康调查(NFHS)-3(2005-06 年)、NFHS-4(2015-16 年)和 NFHS-5(2019-21 年)的 44882、171443 和 135272 名年龄在 15-49 岁的 WRA。超重/肥胖的结局变量定义为 BMI≥25kg/m。采用卡方检验和多变量逻辑回归来确定超重/肥胖的决定因素。

结果

印度城市地区 WRA 的超重/肥胖患病率显著上升,从 2005-06 年的 23%上升至 2019-21 年的 33%。这种增加在 SC/ST 妇女和受教育程度较低的妇女中更为明显。在研究期间,不同州的超重/肥胖率呈现出不同程度的增长,从拉贾斯坦邦的 3%增加到奥里萨邦的 22%。某些南部(如泰米尔纳德邦和安得拉邦)和东北部州的增长率显著增加了 15 个百分点或更多。相比之下,一些北部、中部和东部州(如旁遮普邦、哈里亚纳邦、拉贾斯坦邦、中央邦、恰蒂斯加尔邦、恰尔康得邦、西孟加拉邦)的增长率相对较小,在 5%至 8%之间。截至 2019-21 年,有两个地区的超重/肥胖患病率较高,超过 35%:南部地区(泰米尔纳德邦、安得拉邦、喀拉拉邦和卡纳塔克邦)和北部地区(旁遮普邦、喜马偕尔邦、北阿坎德邦和哈里亚纳邦)。相比之下,赋权行动集团各州的超重/肥胖率相对较低(25%或更低)。回归结果显示,年龄较大的妇女(AOR:5.98,95%CI:5.71-6.27)、来自最富裕五分位数的妇女(AOR:4.23,95%CI:3.95-4.54)、生活在印度南部的妇女(AOR:1.77,95%CI:1.72-1.82)和患有糖尿病的妇女(AOR:1.92,95%CI:1.83-2.02)更有可能超重/肥胖。

结论

考虑到印度城市地区育龄妇女超重/肥胖率的显著增加,以及各州和社会经济群体之间存在的巨大差异,政府必须根据决定因素制定特定于各州的战略和政策,以有效应对超重/肥胖问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d6f2/10557305/f2bd2439c9f2/12889_2023_16842_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验