Kapil Venkat, Kovács Dávid Péter, Csányi Gábor, Michaelides Angelos
Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
Engineering Laboratory, University of Cambridge, Cambridge, CB2 1PZ, UK.
Faraday Discuss. 2024 Feb 6;249(0):50-68. doi: 10.1039/d3fd00113j.
Vibrational spectroscopy is a powerful approach to visualising interfacial phenomena. However, extracting structural and dynamical information from vibrational spectra is a challenge that requires first-principles simulations, including non-Condon and quantum nuclear effects. We address this challenge by developing a machine-learning enhanced first-principles framework to speed up predictive modelling of infrared, Raman, and sum-frequency generation spectra. Our approach uses machine learning potentials that encode quantum nuclear effects to generate quantum trajectories using simple molecular dynamics efficiently. In addition, we reformulate bulk and interfacial selection rules to express them unambiguously in terms of the derivatives of polarisation and polarisabilities of the whole system and predict these derivatives efficiently using fully-differentiable machine learning models of dielectric response tensors. We demonstrate our framework's performance by predicting the IR, Raman, and sum-frequency generation spectra of liquid water, ice and the water-air interface by achieving near quantitative agreement with experiments at nearly the same computational efficiency as pure classical methods. Finally, to aid the experimental discovery of new phases of nanoconfined water, we predict the temperature-dependent vibrational spectra of monolayer water across the solid-hexatic-liquid phases transition.
振动光谱学是一种可视化界面现象的强大方法。然而,从振动光谱中提取结构和动力学信息是一项挑战,需要第一性原理模拟,包括非康登效应和量子核效应。我们通过开发一个机器学习增强的第一性原理框架来应对这一挑战,以加速红外、拉曼和和频产生光谱的预测建模。我们的方法使用编码量子核效应的机器学习势,通过简单的分子动力学有效地生成量子轨迹。此外,我们重新制定了体相和界面选择规则,以便根据整个系统的极化率和极化率导数明确地表达它们,并使用介电响应张量的全可微机器学习模型有效地预测这些导数。我们通过预测液态水、冰和水 - 空气界面的红外、拉曼和和频产生光谱来展示我们框架的性能,在几乎与纯经典方法相同的计算效率下实现了与实验的近定量一致。最后,为了帮助实验发现纳米限域水的新相,我们预测了单层水在固 - 六方 - 液相转变过程中随温度变化的振动光谱。